Spaces:
Running
Running
File size: 27,270 Bytes
40fd629 d0d19b2 40fd629 2432208 40fd629 b79fab9 40fd629 b79fab9 d0d19b2 2432208 b79fab9 40fd629 b79fab9 40fd629 b79fab9 40fd629 b79fab9 40fd629 b79fab9 40fd629 b79fab9 40fd629 b79fab9 40fd629 b79fab9 40fd629 b79fab9 40fd629 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 |
#!/usr/bin/env python3
"""
Quantize Trained Model using torchao
Supports int8 (GPU) and int4 (CPU) quantization with Hugging Face Hub integration
"""
import os
import json
import argparse
import logging
from pathlib import Path
from typing import Dict, Any, Optional, List, Union
from datetime import datetime
import subprocess
import shutil
import platform
try:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
from torchao.quantization import (
Int8WeightOnlyConfig,
Int4WeightOnlyConfig,
Int8DynamicActivationInt8WeightConfig
)
from torchao.dtypes import Int4CPULayout
TORCHAO_AVAILABLE = True
except ImportError:
TORCHAO_AVAILABLE = False
print("Warning: torchao not available. Install with: pip install torchao")
try:
from huggingface_hub import HfApi, create_repo, upload_file
from huggingface_hub import snapshot_download, hf_hub_download
HF_AVAILABLE = True
except ImportError:
HF_AVAILABLE = False
print("Warning: huggingface_hub not available. Install with: pip install huggingface_hub")
try:
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..', 'src'))
from monitoring import SmolLM3Monitor
MONITORING_AVAILABLE = True
except ImportError:
MONITORING_AVAILABLE = False
print("Warning: monitoring module not available")
logger = logging.getLogger(__name__)
class ModelQuantizer:
"""Quantize models using torchao with HF Hub integration"""
def __init__(
self,
model_path: str,
repo_name: str,
token: Optional[str] = None,
private: bool = False,
trackio_url: Optional[str] = None,
experiment_name: Optional[str] = None,
dataset_repo: Optional[str] = None,
hf_token: Optional[str] = None
):
self.model_path = Path(model_path)
self.repo_name = repo_name
self.token = token or hf_token or os.getenv('HF_TOKEN')
self.private = private
self.trackio_url = trackio_url
self.experiment_name = experiment_name
# HF Datasets configuration
self.dataset_repo = dataset_repo or os.getenv('TRACKIO_DATASET_REPO', 'tonic/trackio-experiments')
self.hf_token = hf_token or os.getenv('HF_TOKEN')
# Initialize HF API
if HF_AVAILABLE:
self.api = HfApi(token=self.token)
else:
raise ImportError("huggingface_hub is required. Install with: pip install huggingface_hub")
# Initialize monitoring if available
self.monitor = None
if MONITORING_AVAILABLE:
self.monitor = SmolLM3Monitor(
experiment_name=experiment_name or "model_quantization",
trackio_url=trackio_url,
enable_tracking=bool(trackio_url),
hf_token=self.hf_token,
dataset_repo=self.dataset_repo
)
logger.info(f"Initialized ModelQuantizer for {repo_name}")
logger.info(f"Dataset repository: {self.dataset_repo}")
def validate_model_path(self) -> bool:
"""Validate that the model path exists and contains required files"""
if not self.model_path.exists():
logger.error(f"β Model path does not exist: {self.model_path}")
return False
# Check for essential model files
required_files = ['config.json']
# Check for model files (either safetensors or pytorch)
model_files = [
"model.safetensors.index.json", # Safetensors format
"pytorch_model.bin" # PyTorch format
]
missing_required = []
for file in required_files:
if not (self.model_path / file).exists():
missing_required.append(file)
# Check if at least one model file exists
model_file_exists = any((self.model_path / file).exists() for file in model_files)
if not model_file_exists:
missing_required.extend(model_files)
if missing_required:
logger.error(f"β Missing required model files: {missing_required}")
return False
logger.info(f"β
Model path validated: {self.model_path}")
return True
def create_quantization_config(self, quant_type: str, group_size: int = 128) -> TorchAoConfig:
"""Create torchao quantization configuration"""
if not TORCHAO_AVAILABLE:
raise ImportError("torchao is required. Install with: pip install torchao")
if quant_type == "int8_weight_only":
quant_config = Int8WeightOnlyConfig(group_size=group_size)
elif quant_type == "int4_weight_only":
# For int4, we need to specify CPU layout
quant_config = Int4WeightOnlyConfig(group_size=group_size, layout=Int4CPULayout())
elif quant_type == "int8_dynamic":
quant_config = Int8DynamicActivationInt8WeightConfig()
else:
raise ValueError(f"Unsupported quantization type: {quant_type}")
return TorchAoConfig(quant_type=quant_config)
def get_optimal_device(self, quant_type: str) -> str:
"""Get optimal device for quantization type"""
if quant_type == "int4_weight_only":
# Int4 quantization works better on CPU
return "cpu"
elif quant_type == "int8_weight_only":
# Int8 quantization works on GPU
if torch.cuda.is_available():
return "cuda"
else:
logger.warning("β οΈ CUDA not available, falling back to CPU for int8")
return "cpu"
else:
return "auto"
def quantize_model_alternative(
self,
quant_type: str,
device: str = "auto",
group_size: int = 128,
save_dir: Optional[str] = None
) -> Optional[str]:
"""Alternative quantization using bitsandbytes for better compatibility"""
try:
logger.info(f"π Attempting alternative quantization for: {quant_type}")
# Import bitsandbytes if available
try:
import bitsandbytes as bnb
from transformers import BitsAndBytesConfig
BNB_AVAILABLE = True
except ImportError:
BNB_AVAILABLE = False
logger.error("β bitsandbytes not available for alternative quantization")
return None
if not BNB_AVAILABLE:
return None
# Create bitsandbytes config
if quant_type == "int8_weight_only":
bnb_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False
)
elif quant_type == "int4_weight_only":
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
else:
logger.error(f"β Unsupported quantization type for alternative method: {quant_type}")
return None
# Load model with bitsandbytes quantization
quantized_model = AutoModelForCausalLM.from_pretrained(
str(self.model_path),
quantization_config=bnb_config,
device_map="auto",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True
)
# Determine save directory
if save_dir is None:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
save_dir = f"quantized_{quant_type}_bnb_{timestamp}"
save_path = Path(save_dir)
save_path.mkdir(parents=True, exist_ok=True)
# Save quantized model
logger.info(f"πΎ Saving quantized model to: {save_path}")
quantized_model.save_pretrained(save_path, safe_serialization=False)
# Copy tokenizer files if they exist
tokenizer_files = ['tokenizer.json', 'tokenizer_config.json', 'special_tokens_map.json']
for file in tokenizer_files:
src_file = self.model_path / file
if src_file.exists():
shutil.copy2(src_file, save_path / file)
logger.info(f"π Copied {file}")
logger.info(f"β
Alternative quantization successful: {save_path}")
return str(save_path)
except Exception as e:
logger.error(f"β Alternative quantization failed: {e}")
return None
def quantize_model(
self,
quant_type: str,
device: str = "auto",
group_size: int = 128,
save_dir: Optional[str] = None
) -> Optional[str]:
"""Quantize the model using torchao"""
if not TORCHAO_AVAILABLE:
logger.error("β torchao not available")
return None
try:
logger.info(f"π Loading model from: {self.model_path}")
logger.info(f"π Quantization type: {quant_type}")
logger.info(f"π Device: {device}")
logger.info(f"π Group size: {group_size}")
# Determine optimal device
if device == "auto":
device = self.get_optimal_device(quant_type)
logger.info(f"π Using device: {device}")
# Create quantization config
quantization_config = self.create_quantization_config(quant_type, group_size)
# Load model with appropriate device mapping
if device == "cpu":
device_map = "cpu"
torch_dtype = torch.float32
elif device == "cuda":
device_map = "auto"
torch_dtype = torch.bfloat16
else:
device_map = "auto"
torch_dtype = "auto"
# Load and quantize the model
quantized_model = AutoModelForCausalLM.from_pretrained(
str(self.model_path),
torch_dtype=torch_dtype,
device_map=device_map,
quantization_config=quantization_config,
low_cpu_mem_usage=True
)
# Determine save directory
if save_dir is None:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
save_dir = f"quantized_{quant_type}_{timestamp}"
save_path = Path(save_dir)
save_path.mkdir(parents=True, exist_ok=True)
# Save quantized model (don't use safetensors for torchao)
logger.info(f"πΎ Saving quantized model to: {save_path}")
# For torchao models, we need to handle serialization carefully
try:
quantized_model.save_pretrained(save_path, safe_serialization=False)
except Exception as save_error:
logger.warning(f"β οΈ Standard save failed: {save_error}")
logger.info("π Attempting alternative save method...")
# Try saving without quantization config
try:
# Remove quantization config temporarily
original_config = quantized_model.config.quantization_config
quantized_model.config.quantization_config = None
quantized_model.save_pretrained(save_path, safe_serialization=False)
quantized_model.config.quantization_config = original_config
except Exception as alt_save_error:
logger.error(f"β Alternative save also failed: {alt_save_error}")
return None
# Copy tokenizer files if they exist
tokenizer_files = ['tokenizer.json', 'tokenizer_config.json', 'special_tokens_map.json']
for file in tokenizer_files:
src_file = self.model_path / file
if src_file.exists():
shutil.copy2(src_file, save_path / file)
logger.info(f"π Copied {file}")
logger.info(f"β
Model quantized successfully: {save_path}")
return str(save_path)
except Exception as e:
logger.error(f"β Quantization failed: {e}")
# Try alternative quantization method
logger.info("π Attempting alternative quantization method...")
return self.quantize_model_alternative(quant_type, device, group_size, save_dir)
def create_quantized_model_card(self, quant_type: str, original_model: str, subdir: str) -> str:
"""Create a model card for the quantized model"""
repo_name = self.repo_name
card_content = f"""---
language:
- en
- fr
license: apache-2.0
tags:
- quantized
- {quant_type}
- smollm3
- fine-tuned
---
# Quantized SmolLM3 Model
This is a quantized version of the SmolLM3 model using torchao quantization.
## Model Details
- **Base Model**: SmolLM3-3B
- **Quantization Type**: {quant_type}
- **Original Model**: {original_model}
- **Quantization Library**: torchao
- **Hardware Compatibility**: {'GPU' if 'int8' in quant_type else 'CPU'}
## Usage
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the quantized model
model = AutoModelForCausalLM.from_pretrained(
f"{repo_name}/{subdir}",
device_map="auto",
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(f"{repo_name}/{subdir}")
# Generate text
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt").to(model.device.type)
output = model.generate(**input_ids, max_new_tokens=50)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Quantization Details
- **Method**: torchao {quant_type}
- **Precision**: {'8-bit' if 'int8' in quant_type else '4-bit'}
- **Memory Reduction**: {'~50%' if 'int8' in quant_type else '~75%'}
- **Speed**: {'Faster inference with minimal accuracy loss' if 'int8' in quant_type else 'Significantly faster inference with some accuracy trade-off'}
## Training Information
This model was quantized from a fine-tuned SmolLM3 model using the torchao library.
The quantization process preserves the model's capabilities while reducing memory usage and improving inference speed.
## Limitations
- Quantized models may have slightly reduced accuracy compared to the original model
- {quant_type} quantization is optimized for {'GPU inference' if 'int8' in quant_type else 'CPU inference'}
- Some advanced features may not be available in quantized form
## Citation
If you use this model, please cite the original SmolLM3 paper and mention the quantization process.
```bibtex
@misc{{smollm3-quantized,
title={{Quantized SmolLM3 Model}},
author={{Your Name}},
year={{2024}},
url={{https://huggingface.co/{repo_name}/{subdir}}}
}}
```
"""
return card_content
def create_quantized_readme(self, quant_type: str, original_model: str, subdir: str) -> str:
"""Create a README for the quantized model repository"""
repo_name = self.repo_name
readme_content = f"""# Quantized SmolLM3 Model
This repository contains a quantized version of the SmolLM3 model using torchao quantization.
## Model Information
- **Model Type**: Quantized SmolLM3-3B
- **Quantization**: {quant_type}
- **Original Model**: {original_model}
- **Library**: torchao
- **Hardware**: {'GPU optimized' if 'int8' in quant_type else 'CPU optimized'}
## Quick Start
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the quantized model
model = AutoModelForCausalLM.from_pretrained(
f"{repo_name}/{subdir}",
device_map="auto",
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(f"{repo_name}/{subdir}")
# Generate text
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt").to(model.device.type)
output = model.generate(**input_ids, max_new_tokens=50)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Quantization Benefits
- **Memory Efficiency**: {'~50% reduction in memory usage' if 'int8' in quant_type else '~75% reduction in memory usage'}
- **Speed**: {'Faster inference with minimal accuracy loss' if 'int8' in quant_type else 'Significantly faster inference'}
- **Compatibility**: {'GPU optimized for high-performance inference' if 'int8' in quant_type else 'CPU optimized for deployment'}
## Installation
```bash
pip install torchao transformers
```
## Usage Examples
### Text Generation
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(f"{repo_name}/{subdir}")
tokenizer = AutoTokenizer.from_pretrained(f"{repo_name}/{subdir}")
text = "The future of artificial intelligence is"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
### Conversation
```python
def chat_with_model(prompt, max_length=100):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=max_length)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
response = chat_with_model("Hello, how are you today?")
print(response)
```
## Model Architecture
This is a quantized version of the SmolLM3-3B model with the following specifications:
- **Base Model**: SmolLM3-3B
- **Quantization**: {quant_type}
- **Parameters**: ~3B (quantized)
- **Context Length**: Variable (depends on original model)
- **Languages**: English, French
## Performance
The quantized model provides:
- **Memory Usage**: {'~50% of original model' if 'int8' in quant_type else '~25% of original model'}
- **Inference Speed**: {'Faster than original with minimal accuracy loss' if 'int8' in quant_type else 'Significantly faster with some accuracy trade-off'}
- **Accuracy**: {'Minimal degradation' if 'int8' in quant_type else 'Some degradation acceptable for speed'}
## Limitations
1. **Accuracy**: Quantized models may have slightly reduced accuracy
2. **Compatibility**: {'GPU optimized, may not work on CPU' if 'int8' in quant_type else 'CPU optimized, may not work on GPU'}
3. **Features**: Some advanced features may not be available
4. **Training**: Cannot be further fine-tuned in quantized form
## Citation
If you use this model in your research, please cite:
```bibtex
@misc{{smollm3-quantized,
title={{Quantized SmolLM3 Model}},
author={{Your Name}},
year={{2024}},
url={{https://huggingface.co/{repo_name}/{subdir}}}
}}
```
## License
This model is licensed under the Apache 2.0 License.
## Support
For questions and support, please open an issue on the Hugging Face repository.
"""
return readme_content
def push_quantized_model(
self,
quantized_model_path: str,
quant_type: str,
original_model: str
) -> bool:
"""Push quantized model to the same Hugging Face repository as the main model"""
try:
logger.info(f"π Pushing quantized model to subdirectory in: {self.repo_name}")
# Determine subdirectory name based on quantization type
if quant_type == "int8_weight_only":
subdir = "int8"
elif quant_type == "int4_weight_only":
subdir = "int4"
elif quant_type == "int8_dynamic":
subdir = "int8_dynamic"
else:
subdir = quant_type.replace("_", "-")
# Create repository if it doesn't exist
create_repo(
repo_id=self.repo_name,
token=self.token,
private=self.private,
exist_ok=True
)
# Create model card for the quantized version
model_card = self.create_quantized_model_card(quant_type, original_model, subdir)
model_card_path = Path(quantized_model_path) / "README.md"
with open(model_card_path, 'w', encoding='utf-8') as f:
f.write(model_card)
# Upload all files to subdirectory
logger.info(f"π€ Uploading quantized model files to {subdir}/ subdirectory...")
for file_path in Path(quantized_model_path).rglob("*"):
if file_path.is_file():
relative_path = file_path.relative_to(quantized_model_path)
# Upload to subdirectory within the repository
repo_path = f"{subdir}/{relative_path}"
upload_file(
path_or_fileobj=str(file_path),
path_in_repo=repo_path,
repo_id=self.repo_name,
token=self.token
)
logger.info(f"π€ Uploaded: {repo_path}")
logger.info(f"β
Quantized model pushed successfully to: https://huggingface.co/{self.repo_name}/{subdir}")
# Log to Trackio if available
if self.monitor:
self.monitor.log_metric("quantization_type", quant_type)
self.monitor.log_metric("quantized_model_url", f"https://huggingface.co/{self.repo_name}/{subdir}")
self.monitor.log_artifact("quantized_model_path", quantized_model_path)
return True
except Exception as e:
logger.error(f"β Failed to push quantized model: {e}")
return False
def log_to_trackio(self, action: str, details: Dict[str, Any]):
"""Log quantization events to Trackio"""
if self.monitor:
try:
# Use the correct monitoring method
if hasattr(self.monitor, 'log_event'):
self.monitor.log_event(action, details)
elif hasattr(self.monitor, 'log_metric'):
# Log as metric instead
self.monitor.log_metric(action, details.get('value', 1.0))
elif hasattr(self.monitor, 'log'):
# Use generic log method
self.monitor.log(action, details)
else:
# Just log locally if no monitoring method available
logger.info(f"π {action}: {details}")
logger.info(f"π Logged to Trackio: {action}")
except Exception as e:
logger.warning(f"β οΈ Failed to log to Trackio: {e}")
else:
# Log locally if no monitor available
logger.info(f"π {action}: {details}")
def quantize_and_push(
self,
quant_type: str,
device: str = "auto",
group_size: int = 128
) -> bool:
"""Complete quantization and push workflow"""
try:
# Validate model path
if not self.validate_model_path():
return False
# Log start of quantization
self.log_to_trackio("quantization_started", {
"quant_type": quant_type,
"device": device,
"group_size": group_size,
"model_path": str(self.model_path)
})
# Quantize model
quantized_path = self.quantize_model(quant_type, device, group_size)
if not quantized_path:
return False
# Log successful quantization
self.log_to_trackio("quantization_completed", {
"quantized_path": quantized_path,
"quant_type": quant_type
})
# Push to HF Hub
original_model = str(self.model_path)
if not self.push_quantized_model(quantized_path, quant_type, original_model):
return False
# Log successful push
self.log_to_trackio("quantized_model_pushed", {
"repo_name": self.repo_name,
"quant_type": quant_type
})
logger.info(f"π Quantization and push completed successfully!")
logger.info(f"π Model: https://huggingface.co/{self.repo_name}")
return True
except Exception as e:
logger.error(f"β Quantization and push failed: {e}")
self.log_to_trackio("quantization_failed", {"error": str(e)})
return False
def parse_args():
"""Parse command line arguments"""
parser = argparse.ArgumentParser(description="Quantize model using torchao")
parser.add_argument("model_path", help="Path to the trained model")
parser.add_argument("repo_name", help="Hugging Face repository name")
parser.add_argument("--quant-type", choices=["int8_weight_only", "int4_weight_only", "int8_dynamic"],
default="int8_weight_only", help="Quantization type")
parser.add_argument("--device", default="auto", help="Device for quantization (auto, cpu, cuda)")
parser.add_argument("--group-size", type=int, default=128, help="Group size for quantization")
parser.add_argument("--token", help="Hugging Face token")
parser.add_argument("--private", action="store_true", help="Create private repository")
parser.add_argument("--trackio-url", help="Trackio URL for monitoring")
parser.add_argument("--experiment-name", help="Experiment name for tracking")
parser.add_argument("--dataset-repo", help="HF Dataset repository")
return parser.parse_args()
def main():
"""Main function"""
args = parse_args()
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
# Check torchao availability
if not TORCHAO_AVAILABLE:
logger.error("β torchao not available. Install with: pip install torchao")
return 1
# Initialize quantizer
quantizer = ModelQuantizer(
model_path=args.model_path,
repo_name=args.repo_name,
token=args.token,
private=args.private,
trackio_url=args.trackio_url,
experiment_name=args.experiment_name,
dataset_repo=args.dataset_repo
)
# Perform quantization and push
success = quantizer.quantize_and_push(
quant_type=args.quant_type,
device=args.device,
group_size=args.group_size
)
return 0 if success else 1
if __name__ == "__main__":
exit(main()) |