Spaces:
Running
Running
File size: 4,977 Bytes
93ed7a1 40fd629 93ed7a1 40fd629 93ed7a1 40fd629 93ed7a1 40fd629 93ed7a1 40fd629 93ed7a1 40fd629 93ed7a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
---
dataset_info:
features:
- name: experiment_id
dtype: string
- name: name
dtype: string
- name: description
dtype: string
- name: created_at
dtype: string
- name: status
dtype: string
- name: metrics
dtype: string
- name: parameters
dtype: string
- name: artifacts
dtype: string
- name: logs
dtype: string
- name: last_updated
dtype: string
splits:
- name: train
num_bytes: 4945
num_examples: 2
download_size: 15529
dataset_size: 4945
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
tags:
- trackio
- tonic
- experiment tracking
- smollm3
- fine-tuning
- legml
- hermes
---
# Trackio Experiments Dataset
This dataset stores experiment tracking data for ML training runs, particularly focused on SmolLM3 fine-tuning experiments with comprehensive metrics tracking.
## Dataset Structure
The dataset contains the following columns:
- **experiment_id**: Unique identifier for each experiment
- **name**: Human-readable name for the experiment
- **description**: Detailed description of the experiment
- **created_at**: Timestamp when the experiment was created
- **status**: Current status (running, completed, failed, paused)
- **metrics**: JSON string containing training metrics over time
- **parameters**: JSON string containing experiment configuration
- **artifacts**: JSON string containing experiment artifacts
- **logs**: JSON string containing experiment logs
- **last_updated**: Timestamp of last update
## Metrics Structure
The metrics field contains JSON arrays with the following structure:
```json
[
{
"timestamp": "2025-07-20T11:20:01.780908",
"step": 25,
"metrics": {
"loss": 1.1659,
"accuracy": 0.759,
"learning_rate": 7e-08,
"grad_norm": 10.3125,
"epoch": 0.004851130919895701,
// Advanced Training Metrics
"total_tokens": 1642080.0,
"truncated_tokens": 128,
"padding_tokens": 256,
"throughput": 3284160.0,
"step_time": 0.5,
"batch_size": 8,
"seq_len": 2048,
"token_acc": 0.759,
// Custom Losses
"train/gate_ortho": 0.0234,
"train/center": 0.0156,
// System Metrics
"gpu_memory_allocated": 17.202261447906494,
"gpu_memory_reserved": 75.474609375,
"gpu_utilization": 85.2,
"cpu_percent": 2.7,
"memory_percent": 10.1
}
}
]
```
## Supported Metrics
### Core Training Metrics
- **loss**: Training loss value
- **accuracy**: Model accuracy
- **learning_rate**: Current learning rate
- **grad_norm**: Gradient norm
- **epoch**: Current epoch progress
### Advanced Token Metrics
- **total_tokens**: Total tokens processed in the batch
- **truncated_tokens**: Number of tokens truncated during processing
- **padding_tokens**: Number of padding tokens added
- **throughput**: Tokens processed per second
- **step_time**: Time taken for the current training step
- **batch_size**: Current batch size
- **seq_len**: Sequence length
- **token_acc**: Token-level accuracy
### Custom Losses (SmolLM3-specific)
- **train/gate_ortho**: Gate orthogonality loss
- **train/center**: Center loss component
### System Performance Metrics
- **gpu_memory_allocated**: GPU memory currently allocated (GB)
- **gpu_memory_reserved**: GPU memory reserved (GB)
- **gpu_utilization**: GPU utilization percentage
- **cpu_percent**: CPU usage percentage
- **memory_percent**: System memory usage percentage
## Usage
This dataset is automatically used by the Trackio monitoring system to store and retrieve experiment data. It provides persistent storage for experiment tracking across different training runs.
## Integration
The dataset is used by:
- Trackio Spaces for experiment visualization
- Training scripts for logging metrics and parameters
- Monitoring systems for experiment tracking
- SmolLM3 fine-tuning pipeline for comprehensive metrics capture
## Privacy
This dataset is private by default to ensure experiment data security. Only users with appropriate permissions can access the data.
## Examples
### Sample Experiment Entry
```json
{
"experiment_id": "exp_20250720_130853",
"name": "smollm3_finetune",
"description": "SmolLM3 fine-tuning experiment with comprehensive metrics",
"created_at": "2025-07-20T11:20:01.780908",
"status": "running",
"metrics": "[{\"timestamp\": \"2025-07-20T11:20:01.780908\", \"step\": 25, \"metrics\": {\"loss\": 1.1659, \"accuracy\": 0.759, \"total_tokens\": 1642080.0, \"throughput\": 3284160.0, \"train/gate_ortho\": 0.0234, \"train/center\": 0.0156}}]",
"parameters": "{\"model_name\": \"HuggingFaceTB/SmolLM3-3B\", \"batch_size\": 8, \"learning_rate\": 3.5e-06, \"max_seq_length\": 12288}",
"artifacts": "[]",
"logs": "[]",
"last_updated": "2025-07-20T11:20:01.780908"
}
```
## License
This dataset is part of the Trackio experiment tracking system and follows the same license as the main project.
|