File size: 4,977 Bytes
93ed7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40fd629
 
 
 
93ed7a1
 
 
 
40fd629
93ed7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40fd629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93ed7a1
 
 
 
 
 
 
 
 
 
40fd629
93ed7a1
 
 
 
 
 
 
 
 
 
 
 
40fd629
93ed7a1
 
40fd629
 
93ed7a1
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
---
dataset_info:
  features:
  - name: experiment_id
    dtype: string
  - name: name
    dtype: string
  - name: description
    dtype: string
  - name: created_at
    dtype: string
  - name: status
    dtype: string
  - name: metrics
    dtype: string
  - name: parameters
    dtype: string
  - name: artifacts
    dtype: string
  - name: logs
    dtype: string
  - name: last_updated
    dtype: string
  splits:
  - name: train
    num_bytes: 4945
    num_examples: 2
  download_size: 15529
  dataset_size: 4945
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
tags:
- trackio
- tonic
- experiment tracking
- smollm3
- fine-tuning
- legml
- hermes
---

# Trackio Experiments Dataset

This dataset stores experiment tracking data for ML training runs, particularly focused on SmolLM3 fine-tuning experiments with comprehensive metrics tracking.

## Dataset Structure

The dataset contains the following columns:

- **experiment_id**: Unique identifier for each experiment
- **name**: Human-readable name for the experiment
- **description**: Detailed description of the experiment
- **created_at**: Timestamp when the experiment was created
- **status**: Current status (running, completed, failed, paused)
- **metrics**: JSON string containing training metrics over time
- **parameters**: JSON string containing experiment configuration
- **artifacts**: JSON string containing experiment artifacts
- **logs**: JSON string containing experiment logs
- **last_updated**: Timestamp of last update

## Metrics Structure

The metrics field contains JSON arrays with the following structure:

```json
[
  {
    "timestamp": "2025-07-20T11:20:01.780908",
    "step": 25,
    "metrics": {
      "loss": 1.1659,
      "accuracy": 0.759,
      "learning_rate": 7e-08,
      "grad_norm": 10.3125,
      "epoch": 0.004851130919895701,
      
      // Advanced Training Metrics
      "total_tokens": 1642080.0,
      "truncated_tokens": 128,
      "padding_tokens": 256,
      "throughput": 3284160.0,
      "step_time": 0.5,
      "batch_size": 8,
      "seq_len": 2048,
      "token_acc": 0.759,
      
      // Custom Losses
      "train/gate_ortho": 0.0234,
      "train/center": 0.0156,
      
      // System Metrics
      "gpu_memory_allocated": 17.202261447906494,
      "gpu_memory_reserved": 75.474609375,
      "gpu_utilization": 85.2,
      "cpu_percent": 2.7,
      "memory_percent": 10.1
    }
  }
]
```

## Supported Metrics

### Core Training Metrics
- **loss**: Training loss value
- **accuracy**: Model accuracy
- **learning_rate**: Current learning rate
- **grad_norm**: Gradient norm
- **epoch**: Current epoch progress

### Advanced Token Metrics
- **total_tokens**: Total tokens processed in the batch
- **truncated_tokens**: Number of tokens truncated during processing
- **padding_tokens**: Number of padding tokens added
- **throughput**: Tokens processed per second
- **step_time**: Time taken for the current training step
- **batch_size**: Current batch size
- **seq_len**: Sequence length
- **token_acc**: Token-level accuracy

### Custom Losses (SmolLM3-specific)
- **train/gate_ortho**: Gate orthogonality loss
- **train/center**: Center loss component

### System Performance Metrics
- **gpu_memory_allocated**: GPU memory currently allocated (GB)
- **gpu_memory_reserved**: GPU memory reserved (GB)
- **gpu_utilization**: GPU utilization percentage
- **cpu_percent**: CPU usage percentage
- **memory_percent**: System memory usage percentage

## Usage

This dataset is automatically used by the Trackio monitoring system to store and retrieve experiment data. It provides persistent storage for experiment tracking across different training runs.

## Integration

The dataset is used by:
- Trackio Spaces for experiment visualization
- Training scripts for logging metrics and parameters
- Monitoring systems for experiment tracking
- SmolLM3 fine-tuning pipeline for comprehensive metrics capture

## Privacy

This dataset is private by default to ensure experiment data security. Only users with appropriate permissions can access the data.

## Examples

### Sample Experiment Entry
```json
{
  "experiment_id": "exp_20250720_130853",
  "name": "smollm3_finetune",
  "description": "SmolLM3 fine-tuning experiment with comprehensive metrics",
  "created_at": "2025-07-20T11:20:01.780908",
  "status": "running",
  "metrics": "[{\"timestamp\": \"2025-07-20T11:20:01.780908\", \"step\": 25, \"metrics\": {\"loss\": 1.1659, \"accuracy\": 0.759, \"total_tokens\": 1642080.0, \"throughput\": 3284160.0, \"train/gate_ortho\": 0.0234, \"train/center\": 0.0156}}]",
  "parameters": "{\"model_name\": \"HuggingFaceTB/SmolLM3-3B\", \"batch_size\": 8, \"learning_rate\": 3.5e-06, \"max_seq_length\": 12288}",
  "artifacts": "[]",
  "logs": "[]",
  "last_updated": "2025-07-20T11:20:01.780908"
}
```

## License

This dataset is part of the Trackio experiment tracking system and follows the same license as the main project.