Spaces:
Running
Running
File size: 10,164 Bytes
ebe598e d8dd7a1 40fd629 d8dd7a1 40fd629 d8dd7a1 5fe83da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
# SmolLM3 Fine-tuning
This repository provides a complete setup for fine-tuning SmolLM3 models using the FlexAI console, following the nanoGPT structure but adapted for modern transformer models.
## Overview
SmolLM3 is a 3B-parameter transformer decoder model optimized for efficiency, long-context reasoning, and multilingual support. This setup allows you to fine-tune SmolLM3 for various tasks including:
- **Supervised Fine-tuning (SFT)**: Adapt the model for instruction following
- **Direct Preference Optimization (DPO)**: Improve model alignment
- **Long-context fine-tuning**: Support for up to 128k tokens
- **Tool calling**: Fine-tune for function calling capabilities
- **Model Quantization**: Create int8 (GPU) and int4 (CPU) quantized versions
## Quick Start
### 1. Repository Setup
The repository follows the FlexAI console structure with the following key files:
- `train.py`: Main entry point script
- `config/train_smollm3.py`: Default configuration
- `model.py`: Model wrapper and loading
- `data.py`: Dataset handling and preprocessing
- `trainer.py`: Training loop and trainer setup
- `requirements.txt`: Dependencies
### 2. FlexAI Console Configuration
When setting up a Fine Tuning Job in the FlexAI console, use these settings:
#### Basic Configuration
- **Name**: `smollm3-finetune`
- **Cluster**: Your organization's designated cluster
- **Checkpoint**: (Optional) Previous training job checkpoint
- **Node Count**: 1
- **Accelerator Count**: 1-8 (depending on your needs)
#### Repository Settings
- **Repository URL**: `https://github.com/your-username/flexai-finetune`
- **Repository Revision**: `main`
#### Dataset Configuration
- **Datasets**: Your dataset (mounted under `/input`)
- **Mount Directory**: `my_dataset`
#### Entry Point
```
train.py config/train_smollm3.py --dataset_dir=my_dataset --init_from=resume --out_dir=/input-checkpoint --max_iters=1500
```
### 3. Dataset Format
The script supports multiple dataset formats:
#### Chat Format (Recommended)
```json
[
{
"messages": [
{"role": "user", "content": "What is machine learning?"},
{"role": "assistant", "content": "Machine learning is a subset of AI..."}
]
}
]
```
#### Instruction Format
```json
[
{
"instruction": "What is machine learning?",
"output": "Machine learning is a subset of AI..."
}
]
```
#### User-Assistant Format
```json
[
{
"user": "What is machine learning?",
"assistant": "Machine learning is a subset of AI..."
}
]
```
### 4. Configuration Options
The default configuration in `config/train_smollm3.py` includes:
```python
@dataclass
class SmolLM3Config:
# Model configuration
model_name: str = "HuggingFaceTB/SmolLM3-3B"
max_seq_length: int = 4096
use_flash_attention: bool = True
# Training configuration
batch_size: int = 4
gradient_accumulation_steps: int = 4
learning_rate: float = 2e-5
max_iters: int = 1000
# Mixed precision
fp16: bool = True
bf16: bool = False
```
### 5. Command Line Arguments
The `train.py` script accepts various arguments:
```bash
# Basic usage
python train.py config/train_smollm3.py
# With custom parameters
python train.py config/train_smollm3.py \
--dataset_dir=my_dataset \
--out_dir=/output-checkpoint \
--init_from=resume \
--max_iters=1500 \
--batch_size=8 \
--learning_rate=1e-5 \
--max_seq_length=8192
```
## Advanced Usage
### 1. Custom Configuration
Create a custom configuration file:
```python
# config/my_config.py
from config.train_smollm3 import SmolLM3Config
config = SmolLM3Config(
model_name="HuggingFaceTB/SmolLM3-3B-Instruct",
max_seq_length=8192,
batch_size=2,
learning_rate=1e-5,
max_iters=2000,
use_flash_attention=True,
fp16=True
)
```
### 2. Long-Context Fine-tuning
For long-context tasks (up to 128k tokens):
```python
config = SmolLM3Config(
max_seq_length=131072, # 128k tokens
model_name="HuggingFaceTB/SmolLM3-3B",
use_flash_attention=True,
gradient_checkpointing=True
)
```
### 3. DPO Training
For preference optimization, use the DPO trainer:
```python
from trainer import SmolLM3DPOTrainer
dpo_trainer = SmolLM3DPOTrainer(
model=model,
dataset=dataset,
config=config,
output_dir="./dpo-output"
)
dpo_trainer.train()
```
### 4. Tool Calling Fine-tuning
Include tool calling examples in your dataset:
```json
[
{
"messages": [
{"role": "user", "content": "What's the weather in New York?"},
{"role": "assistant", "content": "<tool_call>\n<invoke name=\"get_weather\">\n<parameter name=\"location\">New York</parameter>\n</invoke>\n</tool_call>"},
{"role": "tool", "content": "The weather in New York is 72Β°F and sunny."},
{"role": "assistant", "content": "The weather in New York is currently 72Β°F and sunny."}
]
}
]
```
## Model Variants
SmolLM3 comes in several variants:
- **SmolLM3-3B-Base**: Base model for general fine-tuning
- **SmolLM3-3B**: Instruction-tuned model
- **SmolLM3-3B-Instruct**: Enhanced instruction model
- **Quantized versions**: Available for deployment
## Hardware Requirements
### Minimum Requirements
- **GPU**: 16GB+ VRAM (for 3B model)
- **RAM**: 32GB+ system memory
- **Storage**: 50GB+ free space
### Recommended
- **GPU**: A100/H100 or similar
- **RAM**: 64GB+ system memory
- **Storage**: 100GB+ SSD
## Troubleshooting
### Common Issues
1. **Out of Memory (OOM)**
- Reduce `batch_size`
- Increase `gradient_accumulation_steps`
- Enable `gradient_checkpointing`
- Use `fp16` or `bf16`
2. **Slow Training**
- Enable `flash_attention`
- Use mixed precision (`fp16`/`bf16`)
- Increase `dataloader_num_workers`
3. **Dataset Loading Issues**
- Check dataset format
- Ensure proper JSON structure
- Verify file permissions
### Debug Mode
Enable debug logging:
```python
import logging
logging.basicConfig(level=logging.DEBUG)
```
## Evaluation
After training, evaluate your model:
```python
from transformers import pipeline
pipe = pipeline(
task="text-generation",
model="./output-checkpoint",
device=0,
max_new_tokens=256,
do_sample=True,
temperature=0.7
)
# Test the model
messages = [{"role": "user", "content": "Explain gravity in simple terms."}]
outputs = pipe(messages)
print(outputs[0]["generated_text"][-1]["content"])
```
## Model Quantization
The pipeline includes built-in quantization support using torchao for creating optimized model versions with a unified repository structure:
### Repository Structure
All models (main and quantized) are stored in a single repository:
```
your-username/model-name/
βββ README.md (unified model card)
βββ config.json
βββ pytorch_model.bin
βββ tokenizer.json
βββ int8/ (quantized model for GPU)
βββ int4/ (quantized model for CPU)
```
### Quantization Types
- **int8_weight_only**: GPU optimized, ~50% memory reduction
- **int4_weight_only**: CPU optimized, ~75% memory reduction
### Automatic Quantization
When using the interactive pipeline (`launch.sh`), you'll be prompted to create quantized versions after training:
```bash
./launch.sh
# ... training completes ...
# Choose quantization options when prompted
```
### Standalone Quantization
Quantize existing models independently:
```bash
# Quantize and push to HF Hub (same repository)
python scripts/model_tonic/quantize_standalone.py /path/to/model your-username/model-name \
--quant-type int8_weight_only \
--token YOUR_HF_TOKEN
# Quantize and save locally
python scripts/model_tonic/quantize_standalone.py /path/to/model your-username/model-name \
--quant-type int4_weight_only \
--device cpu \
--save-only
```
### Loading Quantized Models
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load main model
model = AutoModelForCausalLM.from_pretrained(
"your-username/model-name",
device_map="auto",
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained("your-username/model-name")
# Load int8 quantized model (GPU)
model = AutoModelForCausalLM.from_pretrained(
"your-username/model-name/int8",
device_map="auto",
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained("your-username/model-name/int8")
# Load int4 quantized model (CPU)
model = AutoModelForCausalLM.from_pretrained(
"your-username/model-name/int4",
device_map="cpu",
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained("your-username/model-name/int4")
```
For detailed quantization documentation, see [QUANTIZATION_GUIDE.md](docs/QUANTIZATION_GUIDE.md).
### Unified Model Cards
The system generates comprehensive model cards that include information about all model variants:
- **Single README**: One comprehensive model card for the entire repository
- **Conditional Sections**: Quantized model information appears when available
- **Usage Examples**: Complete examples for all model variants
- **Performance Information**: Memory and speed benefits for each quantization type
For detailed information about the unified model card system, see [UNIFIED_MODEL_CARD_GUIDE.md](docs/UNIFIED_MODEL_CARD_GUIDE.md).
## Deployment
### Using vLLM
```bash
vllm serve ./output-checkpoint --enable-auto-tool-choice
```
### Using llama.cpp
```bash
# Convert to GGUF format
python -m llama_cpp.convert_model ./output-checkpoint --outfile model.gguf
```
## Resources
- [SmolLM3 Blog Post](https://huggingface.co/blog/smollm3)
- [Model Repository](https://huggingface.co/HuggingFaceTB/SmolLM3-3B)
- [GitHub Repository](https://github.com/huggingface/smollm)
- [SmolTalk Dataset](https://huggingface.co/datasets/HuggingFaceTB/smoltalk)
## License
This project follows the same license as the SmolLM3 model. Please refer to the Hugging Face model page for licensing information.
{
"id": "exp_20250718_195852",
"name": "petit-elle-l-aime-3",
"description": "SmolLM3 fine-tuning experiment",
"created_at": "2025-07-18T19:58:52.689087",
"status": "running",
"metrics": [],
"parameters": {},
"artifacts": [],
"logs": []
} |