Spaces:
Running
Running
File size: 27,955 Bytes
5fe83da 6f0279c 5fe83da 987a674 5fe83da 987a674 5fe83da 987a674 5fe83da 987a674 5fe83da 987a674 5fe83da 987a674 5fe83da 987a674 5fe83da 6f0279c 5fe83da 987a674 5fe83da 6f0279c 5fe83da 6f0279c 5fe83da 6f0279c 5fe83da 6f0279c 5fe83da 6f0279c 5fe83da 6f0279c 5fe83da 6f0279c 987a674 6f0279c 987a674 6f0279c 987a674 5fe83da 6f0279c 5fe83da 6f0279c 5fe83da 6f0279c 5fe83da 6f0279c 5fe83da 6f0279c 5fe83da 6f0279c 5fe83da 6f0279c 987a674 6f0279c 987a674 6f0279c 987a674 6f0279c 5fe83da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 |
"""
Trackio Deployment on Hugging Face Spaces
A Gradio interface for experiment tracking and monitoring
"""
import gradio as gr
import os
import json
import logging
from datetime import datetime
from typing import Dict, Any, Optional
import requests
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
import numpy as np
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class TrackioSpace:
"""Trackio deployment for Hugging Face Spaces"""
def __init__(self):
self.experiments = {}
self.current_experiment = None
self.data_file = "trackio_experiments.json"
self._load_experiments()
def _load_experiments(self):
"""Load experiments from file"""
try:
if os.path.exists(self.data_file):
with open(self.data_file, 'r') as f:
data = json.load(f)
self.experiments = data.get('experiments', {})
self.current_experiment = data.get('current_experiment')
logger.info(f"Loaded {len(self.experiments)} experiments from {self.data_file}")
else:
logger.info("No existing experiment data found, starting fresh")
except Exception as e:
logger.error(f"Failed to load experiments: {e}")
self.experiments = {}
def _save_experiments(self):
"""Save experiments to file"""
try:
data = {
'experiments': self.experiments,
'current_experiment': self.current_experiment,
'last_updated': datetime.now().isoformat()
}
with open(self.data_file, 'w') as f:
json.dump(data, f, indent=2, default=str)
logger.debug(f"Saved {len(self.experiments)} experiments to {self.data_file}")
except Exception as e:
logger.error(f"Failed to save experiments: {e}")
def create_experiment(self, name: str, description: str = "") -> Dict[str, Any]:
"""Create a new experiment"""
experiment_id = f"exp_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
experiment = {
'id': experiment_id,
'name': name,
'description': description,
'created_at': datetime.now().isoformat(),
'status': 'running',
'metrics': [],
'parameters': {},
'artifacts': [],
'logs': []
}
self.experiments[experiment_id] = experiment
self.current_experiment = experiment_id
self._save_experiments()
logger.info(f"Created experiment: {experiment_id} - {name}")
return experiment
def log_metrics(self, experiment_id: str, metrics: Dict[str, Any], step: Optional[int] = None):
"""Log metrics for an experiment"""
if experiment_id not in self.experiments:
raise ValueError(f"Experiment {experiment_id} not found")
metric_entry = {
'timestamp': datetime.now().isoformat(),
'step': step,
'metrics': metrics
}
self.experiments[experiment_id]['metrics'].append(metric_entry)
self._save_experiments()
logger.info(f"Logged metrics for experiment {experiment_id}: {metrics}")
def log_parameters(self, experiment_id: str, parameters: Dict[str, Any]):
"""Log parameters for an experiment"""
if experiment_id not in self.experiments:
raise ValueError(f"Experiment {experiment_id} not found")
self.experiments[experiment_id]['parameters'].update(parameters)
self._save_experiments()
logger.info(f"Logged parameters for experiment {experiment_id}: {parameters}")
def log_artifact(self, experiment_id: str, artifact_name: str, artifact_data: str):
"""Log an artifact for an experiment"""
if experiment_id not in self.experiments:
raise ValueError(f"Experiment {experiment_id} not found")
artifact_entry = {
'name': artifact_name,
'timestamp': datetime.now().isoformat(),
'data': artifact_data
}
self.experiments[experiment_id]['artifacts'].append(artifact_entry)
self._save_experiments()
logger.info(f"Logged artifact for experiment {experiment_id}: {artifact_name}")
def get_experiment(self, experiment_id: str) -> Optional[Dict[str, Any]]:
"""Get experiment details"""
return self.experiments.get(experiment_id)
def list_experiments(self) -> Dict[str, Any]:
"""List all experiments"""
return {
'experiments': list(self.experiments.keys()),
'current_experiment': self.current_experiment,
'total_experiments': len(self.experiments)
}
def update_experiment_status(self, experiment_id: str, status: str):
"""Update experiment status"""
if experiment_id in self.experiments:
self.experiments[experiment_id]['status'] = status
self._save_experiments()
logger.info(f"Updated experiment {experiment_id} status to {status}")
def get_metrics_dataframe(self, experiment_id: str) -> pd.DataFrame:
"""Get metrics as a pandas DataFrame for plotting"""
if experiment_id not in self.experiments:
return pd.DataFrame()
experiment = self.experiments[experiment_id]
if not experiment['metrics']:
return pd.DataFrame()
# Convert metrics to DataFrame
data = []
for metric_entry in experiment['metrics']:
step = metric_entry.get('step', 0)
timestamp = metric_entry.get('timestamp', '')
metrics = metric_entry.get('metrics', {})
row = {'step': step, 'timestamp': timestamp}
row.update(metrics)
data.append(row)
return pd.DataFrame(data)
# Initialize Trackio space
trackio_space = TrackioSpace()
# Initialize API client for remote data
api_client = None
try:
from trackio_api_client import TrackioAPIClient
api_client = TrackioAPIClient("https://tonic-test-trackio-test.hf.space")
logger.info("β
API client initialized for remote data access")
except ImportError:
logger.warning("β οΈ API client not available, using local data only")
def get_remote_experiment_data(experiment_id: str) -> Dict[str, Any]:
"""Get experiment data from remote API"""
if api_client is None:
return None
try:
# Get experiment details from API
details_result = api_client.get_experiment_details(experiment_id)
if "success" in details_result:
return {"remote": True, "data": details_result["data"]}
else:
logger.warning(f"Failed to get remote data for {experiment_id}: {details_result}")
return None
except Exception as e:
logger.error(f"Error getting remote data: {e}")
return None
def parse_remote_metrics_data(experiment_details: str) -> pd.DataFrame:
"""Parse metrics data from remote experiment details"""
try:
# Look for metrics in the experiment details
lines = experiment_details.split('\n')
metrics_data = []
for line in lines:
if 'Step:' in line and 'Metrics:' in line:
# Extract step and metrics from the line
try:
# Parse step number
step_part = line.split('Step:')[1].split('Metrics:')[0].strip()
step = int(step_part)
# Parse metrics JSON
metrics_part = line.split('Metrics:')[1].strip()
metrics = json.loads(metrics_part)
# Add timestamp
row = {'step': step, 'timestamp': datetime.now().isoformat()}
row.update(metrics)
metrics_data.append(row)
except (ValueError, json.JSONDecodeError) as e:
logger.warning(f"Failed to parse metrics line: {line} - {e}")
continue
if metrics_data:
return pd.DataFrame(metrics_data)
else:
return pd.DataFrame()
except Exception as e:
logger.error(f"Error parsing remote metrics: {e}")
return pd.DataFrame()
def get_metrics_dataframe(experiment_id: str) -> pd.DataFrame:
"""Get metrics as a pandas DataFrame for plotting - tries remote first, then local"""
# Try to get remote data first
remote_data = get_remote_experiment_data(experiment_id)
if remote_data:
logger.info(f"Using remote data for {experiment_id}")
# Parse the remote experiment details to extract metrics
df = parse_remote_metrics_data(remote_data["data"])
if not df.empty:
logger.info(f"Found {len(df)} metrics entries from remote data")
return df
else:
logger.warning(f"No metrics found in remote data for {experiment_id}")
# Fall back to local data
logger.info(f"Using local data for {experiment_id}")
return trackio_space.get_metrics_dataframe(experiment_id)
def create_experiment_interface(name: str, description: str) -> str:
"""Create a new experiment"""
try:
experiment = trackio_space.create_experiment(name, description)
return f"β
Experiment created successfully!\nID: {experiment['id']}\nName: {experiment['name']}\nStatus: {experiment['status']}"
except Exception as e:
return f"β Error creating experiment: {str(e)}"
def log_metrics_interface(experiment_id: str, metrics_json: str, step: str) -> str:
"""Log metrics for an experiment"""
try:
metrics = json.loads(metrics_json)
step_int = int(step) if step else None
trackio_space.log_metrics(experiment_id, metrics, step_int)
return f"β
Metrics logged successfully for experiment {experiment_id}\nStep: {step_int}\nMetrics: {json.dumps(metrics, indent=2)}"
except Exception as e:
return f"β Error logging metrics: {str(e)}"
def log_parameters_interface(experiment_id: str, parameters_json: str) -> str:
"""Log parameters for an experiment"""
try:
parameters = json.loads(parameters_json)
trackio_space.log_parameters(experiment_id, parameters)
return f"β
Parameters logged successfully for experiment {experiment_id}\nParameters: {json.dumps(parameters, indent=2)}"
except Exception as e:
return f"β Error logging parameters: {str(e)}"
def get_experiment_details(experiment_id: str) -> str:
"""Get experiment details"""
try:
experiment = trackio_space.get_experiment(experiment_id)
if experiment:
# Format the output nicely
details = f"""
π EXPERIMENT DETAILS
====================
ID: {experiment['id']}
Name: {experiment['name']}
Description: {experiment['description']}
Status: {experiment['status']}
Created: {experiment['created_at']}
π METRICS COUNT: {len(experiment['metrics'])}
π PARAMETERS COUNT: {len(experiment['parameters'])}
π¦ ARTIFACTS COUNT: {len(experiment['artifacts'])}
π§ PARAMETERS:
{json.dumps(experiment['parameters'], indent=2)}
π LATEST METRICS:
"""
if experiment['metrics']:
latest_metrics = experiment['metrics'][-1]
details += f"Step: {latest_metrics.get('step', 'N/A')}\n"
details += f"Timestamp: {latest_metrics.get('timestamp', 'N/A')}\n"
details += f"Metrics: {json.dumps(latest_metrics.get('metrics', {}), indent=2)}"
else:
details += "No metrics logged yet."
return details
else:
return f"β Experiment {experiment_id} not found"
except Exception as e:
return f"β Error getting experiment details: {str(e)}"
def list_experiments_interface() -> str:
"""List all experiments with details"""
try:
experiments_info = trackio_space.list_experiments()
experiments = trackio_space.experiments
if not experiments:
return "π No experiments found. Create one first!"
result = f"π EXPERIMENTS OVERVIEW\n{'='*50}\n"
result += f"Total Experiments: {len(experiments)}\n"
result += f"Current Experiment: {experiments_info['current_experiment']}\n\n"
for exp_id, exp_data in experiments.items():
status_emoji = {
'running': 'π’',
'completed': 'β
',
'failed': 'β',
'paused': 'βΈοΈ'
}.get(exp_data['status'], 'β')
result += f"{status_emoji} {exp_id}\n"
result += f" Name: {exp_data['name']}\n"
result += f" Status: {exp_data['status']}\n"
result += f" Created: {exp_data['created_at']}\n"
result += f" Metrics: {len(exp_data['metrics'])} entries\n"
result += f" Parameters: {len(exp_data['parameters'])} entries\n"
result += f" Artifacts: {len(exp_data['artifacts'])} entries\n\n"
return result
except Exception as e:
return f"β Error listing experiments: {str(e)}"
def update_experiment_status_interface(experiment_id: str, status: str) -> str:
"""Update experiment status"""
try:
trackio_space.update_experiment_status(experiment_id, status)
return f"β
Experiment {experiment_id} status updated to {status}"
except Exception as e:
return f"β Error updating experiment status: {str(e)}"
def create_metrics_plot(experiment_id: str, metric_name: str = "loss") -> go.Figure:
"""Create a plot for a specific metric"""
try:
df = get_metrics_dataframe(experiment_id)
if df.empty:
# Return empty plot
fig = go.Figure()
fig.add_annotation(
text="No metrics data available",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False
)
return fig
if metric_name not in df.columns:
# Show available metrics
available_metrics = [col for col in df.columns if col not in ['step', 'timestamp']]
fig = go.Figure()
fig.add_annotation(
text=f"Available metrics: {', '.join(available_metrics)}",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False
)
return fig
fig = px.line(df, x='step', y=metric_name, title=f'{metric_name} over time')
fig.update_layout(
xaxis_title="Training Step",
yaxis_title=metric_name.title(),
hovermode='x unified'
)
return fig
except Exception as e:
fig = go.Figure()
fig.add_annotation(
text=f"Error creating plot: {str(e)}",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False
)
return fig
def create_experiment_comparison(experiment_ids: str) -> go.Figure:
"""Compare multiple experiments"""
try:
exp_ids = [exp_id.strip() for exp_id in experiment_ids.split(',')]
fig = go.Figure()
for exp_id in exp_ids:
df = get_metrics_dataframe(exp_id)
if not df.empty and 'loss' in df.columns:
fig.add_trace(go.Scatter(
x=df['step'],
y=df['loss'],
mode='lines+markers',
name=f"{exp_id} - Loss",
line=dict(width=2)
))
fig.update_layout(
title="Experiment Comparison - Loss",
xaxis_title="Training Step",
yaxis_title="Loss",
hovermode='x unified'
)
return fig
except Exception as e:
fig = go.Figure()
fig.add_annotation(
text=f"Error creating comparison: {str(e)}",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False
)
return fig
def simulate_training_data(experiment_id: str):
"""Simulate training data for demonstration"""
try:
# Simulate some realistic training metrics
for step in range(0, 1000, 50):
# Simulate loss decreasing over time
loss = 2.0 * np.exp(-step / 500) + 0.1 * np.random.random()
accuracy = 0.3 + 0.6 * (1 - np.exp(-step / 300)) + 0.05 * np.random.random()
lr = 3.5e-6 * (0.9 ** (step // 200))
metrics = {
"loss": round(loss, 4),
"accuracy": round(accuracy, 4),
"learning_rate": round(lr, 8),
"gpu_memory": round(20 + 5 * np.random.random(), 2),
"training_time": round(0.5 + 0.2 * np.random.random(), 3)
}
trackio_space.log_metrics(experiment_id, metrics, step)
return f"β
Simulated training data for experiment {experiment_id}\nAdded 20 metric entries (steps 0-950)"
except Exception as e:
return f"β Error simulating data: {str(e)}"
def create_demo_experiment():
"""Create a demo experiment with training data"""
try:
# Create demo experiment
experiment = trackio_space.create_experiment(
"demo_smollm3_training",
"Demo experiment with simulated training data"
)
experiment_id = experiment['id']
# Add some demo parameters
parameters = {
"model_name": "HuggingFaceTB/SmolLM3-3B",
"batch_size": 8,
"learning_rate": 3.5e-6,
"max_iters": 18000,
"mixed_precision": "bf16",
"dataset": "legmlai/openhermes-fr"
}
trackio_space.log_parameters(experiment_id, parameters)
# Add demo training data
simulate_training_data(experiment_id)
return f"β
Demo experiment created: {experiment_id}\nYou can now test the visualization with this experiment!"
except Exception as e:
return f"β Error creating demo experiment: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="Trackio - Experiment Tracking", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π Trackio Experiment Tracking & Monitoring")
gr.Markdown("Monitor and track your ML experiments with real-time visualization!")
with gr.Tabs():
# Create Experiment Tab
with gr.Tab("Create Experiment"):
gr.Markdown("### Create a New Experiment")
with gr.Row():
with gr.Column():
experiment_name = gr.Textbox(
label="Experiment Name",
placeholder="my_smollm3_finetune",
value="smollm3_finetune"
)
experiment_description = gr.Textbox(
label="Description",
placeholder="Fine-tuning SmolLM3 model on custom dataset",
value="SmolLM3 fine-tuning experiment"
)
create_btn = gr.Button("Create Experiment", variant="primary")
with gr.Column():
create_output = gr.Textbox(
label="Result",
lines=5,
interactive=False
)
create_btn.click(
create_experiment_interface,
inputs=[experiment_name, experiment_description],
outputs=create_output
)
# Log Metrics Tab
with gr.Tab("Log Metrics"):
gr.Markdown("### Log Training Metrics")
with gr.Row():
with gr.Column():
metrics_exp_id = gr.Textbox(
label="Experiment ID",
placeholder="exp_20231201_143022"
)
metrics_json = gr.Textbox(
label="Metrics (JSON)",
placeholder='{"loss": 0.5, "accuracy": 0.85, "learning_rate": 2e-5}',
value='{"loss": 0.5, "accuracy": 0.85, "learning_rate": 2e-5, "gpu_memory": 22.5}'
)
metrics_step = gr.Textbox(
label="Step (optional)",
placeholder="100"
)
log_metrics_btn = gr.Button("Log Metrics", variant="primary")
with gr.Column():
metrics_output = gr.Textbox(
label="Result",
lines=5,
interactive=False
)
log_metrics_btn.click(
log_metrics_interface,
inputs=[metrics_exp_id, metrics_json, metrics_step],
outputs=metrics_output
)
# Log Parameters Tab
with gr.Tab("Log Parameters"):
gr.Markdown("### Log Experiment Parameters")
with gr.Row():
with gr.Column():
params_exp_id = gr.Textbox(
label="Experiment ID",
placeholder="exp_20231201_143022"
)
parameters_json = gr.Textbox(
label="Parameters (JSON)",
placeholder='{"learning_rate": 2e-5, "batch_size": 4}',
value='{"learning_rate": 3.5e-6, "batch_size": 8, "model_name": "HuggingFaceTB/SmolLM3-3B", "max_iters": 18000, "mixed_precision": "bf16"}'
)
log_params_btn = gr.Button("Log Parameters", variant="primary")
with gr.Column():
params_output = gr.Textbox(
label="Result",
lines=5,
interactive=False
)
log_params_btn.click(
log_parameters_interface,
inputs=[params_exp_id, parameters_json],
outputs=params_output
)
# View Experiments Tab
with gr.Tab("View Experiments"):
gr.Markdown("### View Experiment Details")
with gr.Row():
with gr.Column():
view_exp_id = gr.Textbox(
label="Experiment ID",
placeholder="exp_20231201_143022"
)
view_btn = gr.Button("View Experiment", variant="primary")
list_btn = gr.Button("List All Experiments", variant="secondary")
with gr.Column():
view_output = gr.Textbox(
label="Experiment Details",
lines=20,
interactive=False
)
view_btn.click(
get_experiment_details,
inputs=[view_exp_id],
outputs=view_output
)
list_btn.click(
list_experiments_interface,
inputs=[],
outputs=view_output
)
# Visualization Tab
with gr.Tab("π Visualizations"):
gr.Markdown("### Training Metrics Visualization")
with gr.Row():
with gr.Column():
plot_exp_id = gr.Textbox(
label="Experiment ID",
placeholder="exp_20231201_143022"
)
metric_dropdown = gr.Dropdown(
label="Metric to Plot",
choices=["loss", "accuracy", "learning_rate", "gpu_memory", "training_time"],
value="loss"
)
plot_btn = gr.Button("Create Plot", variant="primary")
with gr.Column():
plot_output = gr.Plot(label="Training Metrics")
plot_btn.click(
create_metrics_plot,
inputs=[plot_exp_id, metric_dropdown],
outputs=plot_output
)
gr.Markdown("### Experiment Comparison")
with gr.Row():
with gr.Column():
comparison_exp_ids = gr.Textbox(
label="Experiment IDs (comma-separated)",
placeholder="exp_1,exp_2,exp_3"
)
comparison_btn = gr.Button("Compare Experiments", variant="primary")
with gr.Column():
comparison_plot = gr.Plot(label="Experiment Comparison")
comparison_btn.click(
create_experiment_comparison,
inputs=[comparison_exp_ids],
outputs=comparison_plot
)
# Demo Data Tab
with gr.Tab("π― Demo Data"):
gr.Markdown("### Generate Demo Training Data")
gr.Markdown("Use this to simulate training data for testing the interface")
with gr.Row():
with gr.Column():
demo_exp_id = gr.Textbox(
label="Experiment ID",
placeholder="exp_20231201_143022"
)
demo_btn = gr.Button("Generate Demo Data", variant="primary")
create_demo_btn = gr.Button("Create Demo Experiment", variant="secondary")
with gr.Column():
demo_output = gr.Textbox(
label="Result",
lines=5,
interactive=False
)
demo_btn.click(
simulate_training_data,
inputs=[demo_exp_id],
outputs=demo_output
)
create_demo_btn.click(
create_demo_experiment,
inputs=[],
outputs=demo_output
)
# Update Status Tab
with gr.Tab("Update Status"):
gr.Markdown("### Update Experiment Status")
with gr.Row():
with gr.Column():
status_exp_id = gr.Textbox(
label="Experiment ID",
placeholder="exp_20231201_143022"
)
status_dropdown = gr.Dropdown(
label="Status",
choices=["running", "completed", "failed", "paused"],
value="running"
)
update_status_btn = gr.Button("Update Status", variant="primary")
with gr.Column():
status_output = gr.Textbox(
label="Result",
lines=3,
interactive=False
)
update_status_btn.click(
update_experiment_status_interface,
inputs=[status_exp_id, status_dropdown],
outputs=status_output
)
# Launch the app
if __name__ == "__main__":
demo.launch() |