Spaces:
Running
Running
File size: 6,617 Bytes
ebe598e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
# π Monitoring Improvements Summary
## Overview
The monitoring system has been significantly enhanced to support **Hugging Face Datasets** for persistent experiment storage, making it ideal for deployment on Hugging Face Spaces and other cloud environments.
## β
Key Improvements Made
### 1. **Enhanced `monitoring.py`**
- β
**HF Datasets Integration**: Added support for saving experiments to HF Datasets repositories
- β
**Environment Variables**: Automatic detection of `HF_TOKEN` and `TRACKIO_DATASET_REPO`
- β
**Fallback Support**: Graceful degradation if HF Datasets unavailable
- β
**Dual Storage**: Experiments saved to both Trackio and HF Datasets
- β
**Periodic Saving**: Metrics saved to HF Dataset every 10 steps
- β
**Error Handling**: Robust error logging and recovery
### 2. **Updated `train.py`**
- β
**Monitoring Integration**: Automatic monitoring setup in training scripts
- β
**Configuration Logging**: Experiment configuration logged at start
- β
**Training Callbacks**: Monitoring callbacks added to trainer
- β
**Summary Logging**: Training summaries logged at completion
- β
**Error Logging**: Errors logged to monitoring system
- β
**Cleanup**: Proper monitoring session cleanup
### 3. **Configuration Files Updated**
- β
**HF Datasets Config**: Added `hf_token` and `dataset_repo` parameters
- β
**Environment Support**: Environment variables automatically detected
- β
**Backward Compatible**: Existing configurations still work
### 4. **New Utility Scripts**
- β
**`configure_trackio.py`**: Configuration testing and setup
- β
**`integrate_monitoring.py`**: Automated integration script
- β
**`test_monitoring_integration.py`**: Comprehensive testing
- β
**`setup_hf_dataset.py`**: Dataset repository setup
### 5. **Documentation**
- β
**`MONITORING_INTEGRATION_GUIDE.md`**: Comprehensive usage guide
- β
**`ENVIRONMENT_VARIABLES.md`**: Environment variable reference
- β
**`HF_DATASETS_GUIDE.md`**: Detailed HF Datasets guide
## π§ Environment Variables
| Variable | Required | Default | Description |
|----------|----------|---------|-------------|
| `HF_TOKEN` | β
Yes | None | Your Hugging Face token |
| `TRACKIO_DATASET_REPO` | β No | `tonic/trackio-experiments` | Dataset repository |
| `TRACKIO_URL` | β No | None | Trackio server URL |
| `TRACKIO_TOKEN` | β No | None | Trackio authentication token |
## π What Gets Monitored
### **Training Metrics**
- Loss values (training and validation)
- Learning rate
- Gradient norms
- Training steps and epochs
### **System Metrics**
- GPU memory usage
- GPU utilization
- CPU usage
- Memory usage
### **Experiment Data**
- Configuration parameters
- Model checkpoints
- Evaluation results
- Training summaries
### **Artifacts**
- Configuration files
- Training logs
- Evaluation results
- Model checkpoints
## π Usage Examples
### **Basic Training**
```bash
# Set environment variables
export HF_TOKEN=your_token_here
export TRACKIO_DATASET_REPO=your-username/experiments
# Run training with monitoring
python train.py config/train_smollm3_openhermes_fr.py
```
### **Advanced Configuration**
```bash
# Train with custom settings
python train.py config/train_smollm3_openhermes_fr.py \
--experiment_name "smollm3_french_v2" \
--hf_token your_token_here \
--dataset_repo your-username/french-experiments
```
### **Testing Setup**
```bash
# Test configuration
python configure_trackio.py
# Test monitoring integration
python test_monitoring_integration.py
# Test dataset access
python test_hf_datasets.py
```
## π Benefits
### **For HF Spaces Deployment**
- β
**Persistent Storage**: Data survives Space restarts
- β
**No Local Storage**: No dependency on ephemeral storage
- β
**Scalable**: Works with any dataset size
- β
**Secure**: Private dataset storage
### **For Experiment Management**
- β
**Centralized**: All experiments in one place
- β
**Searchable**: Easy to find specific experiments
- β
**Versioned**: Dataset versioning for experiments
- β
**Collaborative**: Share experiments with team
### **For Development**
- β
**Flexible**: Easy to switch between datasets
- β
**Configurable**: Environment-based configuration
- β
**Robust**: Fallback mechanisms
- β
**Debuggable**: Comprehensive logging
## π§ͺ Testing Results
All monitoring integration tests passed:
- β
Module Import
- β
Monitor Creation
- β
Config Creation
- β
Metrics Logging
- β
Configuration Logging
- β
System Metrics
- β
Training Summary
- β
Callback Creation
## π Files Modified/Created
### **Core Files**
- `monitoring.py` - Enhanced with HF Datasets support
- `train.py` - Updated with monitoring integration
- `requirements_core.txt` - Added monitoring dependencies
- `requirements_space.txt` - Updated for HF Spaces
### **Configuration Files**
- `config/train_smollm3.py` - Added HF Datasets config
- `config/train_smollm3_openhermes_fr.py` - Added HF Datasets config
- `config/train_smollm3_openhermes_fr_a100_balanced.py` - Added HF Datasets config
- `config/train_smollm3_openhermes_fr_a100_large.py` - Added HF Datasets config
- `config/train_smollm3_openhermes_fr_a100_max_performance.py` - Added HF Datasets config
- `config/train_smollm3_openhermes_fr_a100_multiple_passes.py` - Added HF Datasets config
### **New Utility Scripts**
- `configure_trackio.py` - Configuration testing
- `integrate_monitoring.py` - Automated integration
- `test_monitoring_integration.py` - Comprehensive testing
- `setup_hf_dataset.py` - Dataset setup
### **Documentation**
- `MONITORING_INTEGRATION_GUIDE.md` - Usage guide
- `ENVIRONMENT_VARIABLES.md` - Environment reference
- `HF_DATASETS_GUIDE.md` - HF Datasets guide
- `MONITORING_IMPROVEMENTS_SUMMARY.md` - This summary
## π― Next Steps
1. **Set up your HF token and dataset repository**
2. **Test the configuration with `python configure_trackio.py`**
3. **Run a training experiment to verify full functionality**
4. **Check your HF Dataset repository for experiment data**
5. **View results in your Trackio interface**
## π Troubleshooting
### **Common Issues**
- **HF_TOKEN not set**: Set your Hugging Face token
- **Dataset access failed**: Check token permissions and repository existence
- **Monitoring not working**: Run `python test_monitoring_integration.py` to diagnose
### **Getting Help**
- Check the comprehensive guides in the documentation files
- Run the test scripts to verify your setup
- Check logs for specific error messages
---
**π The monitoring system is now ready for production use with persistent HF Datasets storage!** |