File size: 6,617 Bytes
ebe598e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# πŸš€ Monitoring Improvements Summary

## Overview

The monitoring system has been significantly enhanced to support **Hugging Face Datasets** for persistent experiment storage, making it ideal for deployment on Hugging Face Spaces and other cloud environments.

## βœ… Key Improvements Made

### 1. **Enhanced `monitoring.py`**
- βœ… **HF Datasets Integration**: Added support for saving experiments to HF Datasets repositories
- βœ… **Environment Variables**: Automatic detection of `HF_TOKEN` and `TRACKIO_DATASET_REPO`
- βœ… **Fallback Support**: Graceful degradation if HF Datasets unavailable
- βœ… **Dual Storage**: Experiments saved to both Trackio and HF Datasets
- βœ… **Periodic Saving**: Metrics saved to HF Dataset every 10 steps
- βœ… **Error Handling**: Robust error logging and recovery

### 2. **Updated `train.py`**
- βœ… **Monitoring Integration**: Automatic monitoring setup in training scripts
- βœ… **Configuration Logging**: Experiment configuration logged at start
- βœ… **Training Callbacks**: Monitoring callbacks added to trainer
- βœ… **Summary Logging**: Training summaries logged at completion
- βœ… **Error Logging**: Errors logged to monitoring system
- βœ… **Cleanup**: Proper monitoring session cleanup

### 3. **Configuration Files Updated**
- βœ… **HF Datasets Config**: Added `hf_token` and `dataset_repo` parameters
- βœ… **Environment Support**: Environment variables automatically detected
- βœ… **Backward Compatible**: Existing configurations still work

### 4. **New Utility Scripts**
- βœ… **`configure_trackio.py`**: Configuration testing and setup
- βœ… **`integrate_monitoring.py`**: Automated integration script
- βœ… **`test_monitoring_integration.py`**: Comprehensive testing
- βœ… **`setup_hf_dataset.py`**: Dataset repository setup

### 5. **Documentation**
- βœ… **`MONITORING_INTEGRATION_GUIDE.md`**: Comprehensive usage guide
- βœ… **`ENVIRONMENT_VARIABLES.md`**: Environment variable reference
- βœ… **`HF_DATASETS_GUIDE.md`**: Detailed HF Datasets guide

## πŸ”§ Environment Variables

| Variable | Required | Default | Description |
|----------|----------|---------|-------------|
| `HF_TOKEN` | βœ… Yes | None | Your Hugging Face token |
| `TRACKIO_DATASET_REPO` | ❌ No | `tonic/trackio-experiments` | Dataset repository |
| `TRACKIO_URL` | ❌ No | None | Trackio server URL |
| `TRACKIO_TOKEN` | ❌ No | None | Trackio authentication token |

## πŸ“Š What Gets Monitored

### **Training Metrics**
- Loss values (training and validation)
- Learning rate
- Gradient norms
- Training steps and epochs

### **System Metrics**
- GPU memory usage
- GPU utilization
- CPU usage
- Memory usage

### **Experiment Data**
- Configuration parameters
- Model checkpoints
- Evaluation results
- Training summaries

### **Artifacts**
- Configuration files
- Training logs
- Evaluation results
- Model checkpoints

## πŸš€ Usage Examples

### **Basic Training**
```bash
# Set environment variables
export HF_TOKEN=your_token_here
export TRACKIO_DATASET_REPO=your-username/experiments

# Run training with monitoring
python train.py config/train_smollm3_openhermes_fr.py
```

### **Advanced Configuration**
```bash
# Train with custom settings
python train.py config/train_smollm3_openhermes_fr.py \
  --experiment_name "smollm3_french_v2" \
  --hf_token your_token_here \
  --dataset_repo your-username/french-experiments
```

### **Testing Setup**
```bash
# Test configuration
python configure_trackio.py

# Test monitoring integration
python test_monitoring_integration.py

# Test dataset access
python test_hf_datasets.py
```

## πŸ“ˆ Benefits

### **For HF Spaces Deployment**
- βœ… **Persistent Storage**: Data survives Space restarts
- βœ… **No Local Storage**: No dependency on ephemeral storage
- βœ… **Scalable**: Works with any dataset size
- βœ… **Secure**: Private dataset storage

### **For Experiment Management**
- βœ… **Centralized**: All experiments in one place
- βœ… **Searchable**: Easy to find specific experiments
- βœ… **Versioned**: Dataset versioning for experiments
- βœ… **Collaborative**: Share experiments with team

### **For Development**
- βœ… **Flexible**: Easy to switch between datasets
- βœ… **Configurable**: Environment-based configuration
- βœ… **Robust**: Fallback mechanisms
- βœ… **Debuggable**: Comprehensive logging

## πŸ§ͺ Testing Results

All monitoring integration tests passed:
- βœ… Module Import
- βœ… Monitor Creation
- βœ… Config Creation
- βœ… Metrics Logging
- βœ… Configuration Logging
- βœ… System Metrics
- βœ… Training Summary
- βœ… Callback Creation

## πŸ“‹ Files Modified/Created

### **Core Files**
- `monitoring.py` - Enhanced with HF Datasets support
- `train.py` - Updated with monitoring integration
- `requirements_core.txt` - Added monitoring dependencies
- `requirements_space.txt` - Updated for HF Spaces

### **Configuration Files**
- `config/train_smollm3.py` - Added HF Datasets config
- `config/train_smollm3_openhermes_fr.py` - Added HF Datasets config
- `config/train_smollm3_openhermes_fr_a100_balanced.py` - Added HF Datasets config
- `config/train_smollm3_openhermes_fr_a100_large.py` - Added HF Datasets config
- `config/train_smollm3_openhermes_fr_a100_max_performance.py` - Added HF Datasets config
- `config/train_smollm3_openhermes_fr_a100_multiple_passes.py` - Added HF Datasets config

### **New Utility Scripts**
- `configure_trackio.py` - Configuration testing
- `integrate_monitoring.py` - Automated integration
- `test_monitoring_integration.py` - Comprehensive testing
- `setup_hf_dataset.py` - Dataset setup

### **Documentation**
- `MONITORING_INTEGRATION_GUIDE.md` - Usage guide
- `ENVIRONMENT_VARIABLES.md` - Environment reference
- `HF_DATASETS_GUIDE.md` - HF Datasets guide
- `MONITORING_IMPROVEMENTS_SUMMARY.md` - This summary

## 🎯 Next Steps

1. **Set up your HF token and dataset repository**
2. **Test the configuration with `python configure_trackio.py`**
3. **Run a training experiment to verify full functionality**
4. **Check your HF Dataset repository for experiment data**
5. **View results in your Trackio interface**

## πŸ” Troubleshooting

### **Common Issues**
- **HF_TOKEN not set**: Set your Hugging Face token
- **Dataset access failed**: Check token permissions and repository existence
- **Monitoring not working**: Run `python test_monitoring_integration.py` to diagnose

### **Getting Help**
- Check the comprehensive guides in the documentation files
- Run the test scripts to verify your setup
- Check logs for specific error messages

---

**πŸŽ‰ The monitoring system is now ready for production use with persistent HF Datasets storage!**