File size: 10,377 Bytes
ebe598e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#!/usr/bin/env python3
"""
Script to integrate improved monitoring with HF Datasets into training scripts
"""

import os
import sys
import re
from pathlib import Path

def update_training_script(script_path: str):
    """Update a training script to include improved monitoring"""
    
    print(f"πŸ”§ Updating {script_path}...")
    
    with open(script_path, 'r', encoding='utf-8') as f:
        content = f.read()
    
    # Check if monitoring is already imported
    if 'from monitoring import' in content:
        print(f"  ⚠️  Monitoring already imported in {script_path}")
        return False
    
    # Add monitoring import
    import_pattern = r'(from \w+ import.*?)(\n\n|\n$)'
    match = re.search(import_pattern, content, re.MULTILINE | re.DOTALL)
    
    if match:
        # Add monitoring import after existing imports
        new_import = match.group(1) + '\nfrom monitoring import create_monitor_from_config\n' + match.group(2)
        content = content.replace(match.group(0), new_import)
    else:
        # Add at the beginning if no imports found
        content = 'from monitoring import create_monitor_from_config\n\n' + content
    
    # Find the main training function and add monitoring
    # Look for patterns like "def main():" or "def train():"
    main_patterns = [
        r'def main\(\):',
        r'def train\(\):',
        r'def run_training\(\):'
    ]
    
    monitoring_added = False
    for pattern in main_patterns:
        if re.search(pattern, content):
            # Add monitoring initialization after config loading
            config_pattern = r'(config\s*=\s*get_config\([^)]+\))'
            config_match = re.search(config_pattern, content)
            
            if config_match:
                monitoring_code = '''
    # Initialize monitoring
    monitor = None
    if config.enable_tracking:
        try:
            monitor = create_monitor_from_config(config, getattr(config, 'experiment_name', None))
            logger.info(f"βœ… Monitoring initialized for experiment: {monitor.experiment_name}")
            logger.info(f"πŸ“Š Dataset repository: {monitor.dataset_repo}")
            
            # Log configuration
            config_dict = {k: v for k, v in vars(config).items() if not k.startswith('_')}
            monitor.log_configuration(config_dict)
            
        except Exception as e:
            logger.error(f"Failed to initialize monitoring: {e}")
            logger.warning("Continuing without monitoring...")
'''
                
                # Insert monitoring code after config loading
                insert_point = config_match.end()
                content = content[:insert_point] + monitoring_code + content[insert_point:]
                
                # Add monitoring callback to trainer
                trainer_pattern = r'(trainer\s*=\s*[^)]+\))'
                trainer_match = re.search(trainer_pattern, content)
                
                if trainer_match:
                    callback_code = '''
    # Add monitoring callback if available
    if monitor:
        try:
            callback = monitor.create_monitoring_callback()
            trainer.add_callback(callback)
            logger.info("βœ… Monitoring callback added to trainer")
        except Exception as e:
            logger.error(f"Failed to add monitoring callback: {e}")
'''
                    
                    insert_point = trainer_match.end()
                    content = content[:insert_point] + callback_code + content[insert_point:]
                
                # Add training summary logging
                train_pattern = r'(trainer\.train\(\))'
                train_match = re.search(train_pattern, content)
                
                if train_match:
                    summary_code = '''
        # Log training summary
        if monitor:
            try:
                summary = {
                    'final_loss': getattr(trainer, 'final_loss', None),
                    'total_steps': getattr(trainer, 'total_steps', None),
                    'training_duration': getattr(trainer, 'training_duration', None),
                    'model_path': output_path,
                    'config_file': config_path
                }
                monitor.log_training_summary(summary)
                logger.info("βœ… Training summary logged")
            except Exception as e:
                logger.error(f"Failed to log training summary: {e}")
'''
                    
                    # Find the training call and add summary after it
                    train_call_pattern = r'(trainer\.train\(\)\s*\n\s*logger\.info\("Training completed successfully!"\))'
                    train_call_match = re.search(train_call_pattern, content)
                    
                    if train_call_match:
                        insert_point = train_call_match.end()
                        content = content[:insert_point] + summary_code + content[insert_point:]
                
                # Add error handling and cleanup
                error_pattern = r'(except Exception as e:\s*\n\s*logger\.error\(f"Training failed: {e}"\)\s*\n\s*raise)'
                error_match = re.search(error_pattern, content)
                
                if error_match:
                    error_code = '''
        # Log error to monitoring
        if monitor:
            try:
                error_summary = {
                    'error': str(e),
                    'status': 'failed',
                    'model_path': output_path,
                    'config_file': config_path
                }
                monitor.log_training_summary(error_summary)
            except Exception as log_error:
                logger.error(f"Failed to log error to monitoring: {log_error}")
'''
                    
                    insert_point = error_match.end()
                    content = content[:insert_point] + error_code + content[insert_point:]
                
                # Add finally block for cleanup
                finally_pattern = r'(raise\s*\n\s*if __name__ == \'__main__\':)'
                finally_match = re.search(finally_pattern, content)
                
                if finally_match:
                    cleanup_code = '''
    finally:
        # Close monitoring
        if monitor:
            try:
                monitor.close()
                logger.info("βœ… Monitoring session closed")
            except Exception as e:
                logger.error(f"Failed to close monitoring: {e}")

'''
                    
                    insert_point = finally_match.start()
                    content = content[:insert_point] + cleanup_code + content[insert_point:]
                
                monitoring_added = True
                break
    
    if monitoring_added:
        # Write updated content
        with open(script_path, 'w', encoding='utf-8') as f:
            f.write(content)
        
        print(f"  βœ… Updated {script_path} with monitoring integration")
        return True
    else:
        print(f"  ⚠️  Could not find main training function in {script_path}")
        return False

def update_config_files():
    """Update configuration files to include HF Datasets support"""
    
    config_dir = Path("config")
    config_files = list(config_dir.glob("*.py"))
    
    print(f"πŸ”§ Updating configuration files...")
    
    for config_file in config_files:
        if config_file.name.startswith("__"):
            continue
            
        print(f"  πŸ“ Checking {config_file.name}...")
        
        with open(config_file, 'r', encoding='utf-8') as f:
            content = f.read()
        
        # Check if HF Datasets config is already present
        if 'TRACKIO_DATASET_REPO' in content:
            print(f"    ⚠️  HF Datasets config already present in {config_file.name}")
            continue
        
        # Add HF Datasets configuration
        trackio_pattern = r'(# Trackio monitoring configuration.*?experiment_name: Optional\[str\] = None)'
        trackio_match = re.search(trackio_pattern, content, re.DOTALL)
        
        if trackio_match:
            hf_config = '''
    # HF Datasets configuration
    hf_token: Optional[str] = None
    dataset_repo: Optional[str] = None
'''
            
            insert_point = trackio_match.end()
            content = content[:insert_point] + hf_config + content[insert_point:]
            
            # Write updated content
            with open(config_file, 'w', encoding='utf-8') as f:
                f.write(content)
            
            print(f"    βœ… Added HF Datasets config to {config_file.name}")
        else:
            print(f"    ⚠️  Could not find Trackio config section in {config_file.name}")

def main():
    """Main function to integrate monitoring into all training scripts"""
    
    print("πŸš€ Integrating improved monitoring with HF Datasets...")
    print("=" * 60)
    
    # Update main training script
    main_script = "train.py"
    if os.path.exists(main_script):
        update_training_script(main_script)
    else:
        print(f"⚠️  Main training script {main_script} not found")
    
    # Update configuration files
    update_config_files()
    
    # Update any other training scripts in config directory
    config_dir = Path("config")
    training_scripts = [
        "train_smollm3_openhermes_fr.py",
        "train_smollm3_openhermes_fr_a100_balanced.py",
        "train_smollm3_openhermes_fr_a100_large.py",
        "train_smollm3_openhermes_fr_a100_max_performance.py",
        "train_smollm3_openhermes_fr_a100_multiple_passes.py"
    ]
    
    print(f"\nπŸ”§ Updating training scripts in config directory...")
    
    for script_name in training_scripts:
        script_path = config_dir / script_name
        if script_path.exists():
            update_training_script(str(script_path))
        else:
            print(f"  ⚠️  Training script {script_name} not found")
    
    print(f"\nβœ… Monitoring integration completed!")
    print(f"\nπŸ“‹ Next steps:")
    print(f"1. Set HF_TOKEN environment variable")
    print(f"2. Optionally set TRACKIO_DATASET_REPO")
    print(f"3. Run your training scripts with monitoring enabled")
    print(f"4. Check your HF Dataset repository for experiment data")

if __name__ == "__main__":
    main()