File size: 5,020 Bytes
21d66ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# SmolLM3 Training Pipeline Fixes Summary

## Issues Identified and Fixed

### 1. Format String Error
**Issue**: `Unknown format code 'f' for object of type 'str'`
**Root Cause**: The console callback was trying to format non-numeric values with f-string format specifiers
**Fix**: Updated `src/trainer.py` to properly handle type conversion before formatting

```python
# Before (causing error):
print("Step {}: loss={:.4f}, lr={}".format(step, loss, lr))

# After (fixed):
if isinstance(loss, (int, float)):
    loss_str = f"{loss:.4f}"
else:
    loss_str = str(loss)
if isinstance(lr, (int, float)):
    lr_str = f"{lr:.2e}"
else:
    lr_str = str(lr)
print(f"Step {step}: loss={loss_str}, lr={lr_str}")
```

### 2. Callback Addition Error
**Issue**: `'SmolLM3Trainer' object has no attribute 'add_callback'`
**Root Cause**: The trainer was trying to add callbacks after creation, but callbacks should be passed during trainer creation
**Fix**: Removed the incorrect `add_callback` call from `src/train.py` since callbacks are already handled in `SmolLM3Trainer._setup_trainer()`

### 3. Trackio Space Deployment Issues
**Issue**: 404 errors when trying to create experiments via Trackio API
**Root Cause**: The Trackio Space deployment was failing or the API endpoints weren't accessible
**Fix**: Updated `src/monitoring.py` to gracefully handle Trackio Space failures and continue with HF Datasets integration

```python
# Added graceful fallback:
try:
    result = self.trackio_client.log_metrics(...)
    if "success" in result:
        logger.debug("Metrics logged to Trackio")
    else:
        logger.warning("Failed to log metrics to Trackio: %s", result)
except Exception as e:
    logger.warning("Trackio logging failed: %s", e)
```

### 4. Monitoring Integration Improvements
**Enhancement**: Made monitoring more robust by:
- Testing Trackio Space connectivity before attempting operations
- Continuing with HF Datasets even if Trackio fails
- Adding better error handling and logging
- Ensuring experiments are saved to HF Datasets regardless of Trackio status

## Files Modified

### Core Training Files
1. **`src/trainer.py`**
   - Fixed format string error in SimpleConsoleCallback
   - Improved callback handling and error reporting

2. **`src/train.py`**
   - Removed incorrect `add_callback` call
   - Simplified trainer initialization

3. **`src/monitoring.py`**
   - Added graceful Trackio Space failure handling
   - Improved error logging and fallback mechanisms
   - Enhanced HF Datasets integration

### Test Files
4. **`tests/test_training_fix.py`**
   - Created comprehensive test suite
   - Tests imports, config loading, monitoring setup, trainer creation
   - Validates format string fixes

## Testing the Fixes

Run the test suite to verify all fixes work:

```bash
python tests/test_training_fix.py
```

Expected output:
```
πŸš€ Testing SmolLM3 Training Pipeline Fixes
==================================================
πŸ” Testing imports...
βœ… config.py imported successfully
βœ… model.py imported successfully
βœ… data.py imported successfully
βœ… trainer.py imported successfully
βœ… monitoring.py imported successfully

πŸ” Testing configuration loading...
βœ… Configuration loaded successfully
   Model: HuggingFaceTB/SmolLM3-3B
   Dataset: legmlai/openhermes-fr
   Batch size: 16
   Learning rate: 8e-06

πŸ” Testing monitoring setup...
βœ… Monitoring setup successful
   Experiment: test_experiment
   Tracking enabled: False
   HF Dataset: tonic/trackio-experiments

πŸ” Testing trainer creation...
βœ… Model created successfully
βœ… Dataset created successfully
βœ… Trainer created successfully

πŸ” Testing format string fix...
βœ… Format string fix works correctly

πŸ“Š Test Results: 5/5 tests passed
βœ… All tests passed! The training pipeline should work correctly.
```

## Running the Training Pipeline

The training pipeline should now work correctly with the H100 lightweight configuration:

```bash
# Run the interactive pipeline
./launch.sh

# Or run training directly
python src/train.py config/train_smollm3_h100_lightweight.py \
    --experiment-name "smollm3_test" \
    --trackio-url "https://your-space.hf.space" \
    --output-dir /output-checkpoint
```

## Key Improvements

1. **Robust Error Handling**: Training continues even if monitoring components fail
2. **Better Logging**: More informative error messages and status updates
3. **Graceful Degradation**: HF Datasets integration works even without Trackio Space
4. **Type Safety**: Proper type checking prevents format string errors
5. **Comprehensive Testing**: Test suite validates all components work correctly

## Next Steps

1. **Deploy Trackio Space**: If you want full monitoring, deploy the Trackio Space manually
2. **Test Training**: Run a short training session to verify everything works
3. **Monitor Progress**: Check HF Datasets for experiment data even if Trackio Space is unavailable

The training pipeline should now work reliably for your end-to-end fine-tuning experiments!