Spaces:
Running
Running
File size: 9,693 Bytes
ebe598e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
# SmolLM3 End-to-End Pipeline - Implementation Summary
This document summarizes the comprehensive refactoring and enhancement of the SmolLM3 fine-tuning codebase to create a complete end-to-end pipeline.
## π― Overview
The pipeline now provides a complete solution from Trackio Space deployment to model push, with integrated monitoring, dataset management, and automated deployment.
## π Files Created/Modified
### **Core Pipeline Files**
1. **`launch.sh`** - Complete end-to-end pipeline script
- 16-step comprehensive pipeline
- Automated environment setup
- Integrated monitoring and deployment
- Dynamic configuration generation
2. **`setup_launch.py`** - User configuration helper
- Interactive setup for user credentials
- Automatic script configuration
- Requirements checker generation
3. **`test_pipeline.py`** - Comprehensive testing suite
- Import testing
- Component verification
- CUDA and HF token validation
4. **`README_END_TO_END.md`** - Complete documentation
- Step-by-step usage guide
- Troubleshooting section
- Advanced configuration options
### **Scripts and Utilities**
5. **`scripts/trackio_tonic/trackio_api_client.py`** - API client for Trackio
- Complete API client implementation
- Error handling and retry logic
- Support for both JSON and SSE responses
6. **`scripts/trackio_tonic/deploy_trackio_space.py`** - Space deployment
- Automated HF Space creation
- File upload and configuration
- Space testing and validation
7. **`scripts/trackio_tonic/configure_trackio.py`** - Configuration helper
- Environment variable setup
- Dataset repository configuration
- Usage examples and validation
8. **`scripts/model_tonic/push_to_huggingface.py`** - Model deployment
- Complete model upload pipeline
- Model card generation
- Training results documentation
9. **`scripts/dataset_tonic/setup_hf_dataset.py`** - Dataset setup
- HF Dataset repository creation
- Initial experiment data structure
- Dataset access configuration
### **Source Code Updates**
10. **`src/monitoring.py`** - Enhanced monitoring
- HF Datasets integration
- Trackio API client integration
- Comprehensive metrics logging
11. **`src/train.py`** - Updated training script
- Monitoring integration
- HF Datasets support
- Enhanced error handling
12. **`src/config.py`** - Configuration management
- Dynamic config loading
- Multiple config type support
- Fallback mechanisms
13. **`src/data.py`** - Enhanced dataset handling
- Multiple format support
- Automatic conversion
- Bad entry filtering
14. **`src/model.py`** - Model wrapper
- SmolLM3-specific optimizations
- Flash attention support
- Long context handling
15. **`src/trainer.py`** - Training orchestration
- Monitoring callback integration
- Enhanced logging
- Checkpoint management
## π§ Key Improvements
### **1. Import Path Fixes**
- Fixed all import paths to work with the refactored structure
- Added proper sys.path handling for cross-module imports
- Ensured compatibility between different script locations
### **2. Monitoring Integration**
- **Trackio Space**: Real-time experiment tracking
- **HF Datasets**: Persistent experiment storage
- **System Metrics**: GPU, memory, and CPU monitoring
- **Training Callbacks**: Automatic metric logging
### **3. Dataset Handling**
- **Multi-format Support**: Prompt/completion, instruction/output, chat formats
- **Automatic Conversion**: Handles different dataset structures
- **Validation**: Ensures data quality and completeness
- **Splitting**: Automatic train/validation/test splits
### **4. Configuration Management**
- **Dynamic Generation**: Creates configs based on user input
- **Multiple Types**: Support for different training configurations
- **Environment Variables**: Proper integration with environment
- **Validation**: Ensures configuration correctness
### **5. Deployment Automation**
- **Model Upload**: Complete model push to HF Hub
- **Model Cards**: Comprehensive documentation generation
- **Training Results**: Complete experiment documentation
- **Testing**: Automated model validation
## π Pipeline Steps
The end-to-end pipeline performs these 16 steps:
1. **Environment Setup** - System dependencies and Python environment
2. **PyTorch Installation** - CUDA-enabled PyTorch installation
3. **Dependencies** - All required Python packages
4. **Authentication** - HF token setup and validation
5. **Trackio Deployment** - HF Space creation and configuration
6. **Dataset Setup** - HF Dataset repository creation
7. **Trackio Configuration** - Environment and dataset configuration
8. **Training Config** - Dynamic configuration generation
9. **Dataset Preparation** - Download and format conversion
10. **Parameter Calculation** - Training steps and batch calculations
11. **Training Execution** - Model fine-tuning with monitoring
12. **Model Push** - Upload to HF Hub with documentation
13. **Model Testing** - Validation of uploaded model
14. **Summary Report** - Complete training documentation
15. **Resource Links** - All online resource URLs
16. **Next Steps** - Usage instructions and recommendations
## π Monitoring Features
### **Trackio Space Interface**
- Real-time training metrics
- Experiment comparison
- System resource monitoring
- Training progress visualization
### **HF Dataset Storage**
- Persistent experiment data
- Version-controlled history
- Collaborative sharing
- Automated backup
### **Comprehensive Logging**
- Training metrics (loss, accuracy, etc.)
- System metrics (GPU, memory, CPU)
- Configuration parameters
- Training artifacts
## π§ Configuration Options
### **User Configuration**
```bash
# Required
HF_TOKEN="your_token"
HF_USERNAME="your_username"
# Optional
MODEL_NAME="HuggingFaceTB/SmolLM3-3B"
DATASET_NAME="HuggingFaceTB/smoltalk"
```
### **Training Parameters**
```bash
BATCH_SIZE=2
GRADIENT_ACCUMULATION_STEPS=8
LEARNING_RATE=5e-6
MAX_EPOCHS=3
MAX_SEQ_LENGTH=4096
```
### **Monitoring Configuration**
```bash
TRACKIO_DATASET_REPO="username/trackio-experiments"
EXPERIMENT_NAME="smollm3_finetune_YYYYMMDD_HHMMSS"
```
## π οΈ Error Handling
### **Comprehensive Error Handling**
- Import error detection and reporting
- Configuration validation
- Network timeout handling
- Graceful degradation
### **Debugging Support**
- Detailed logging at all levels
- Component-specific error messages
- Fallback mechanisms
- Testing utilities
## π Performance Optimizations
### **Training Optimizations**
- Flash Attention for efficiency
- Gradient checkpointing for memory
- Mixed precision training
- Optimized data loading
### **Monitoring Optimizations**
- Asynchronous logging
- Batch metric updates
- Efficient data storage
- Minimal overhead
## π Integration Points
### **Hugging Face Ecosystem**
- **HF Hub**: Model and dataset storage
- **HF Spaces**: Trackio monitoring interface
- **HF Datasets**: Experiment data persistence
- **HF CLI**: Authentication and deployment
### **External Services**
- **Trackio**: Experiment tracking
- **CUDA**: GPU acceleration
- **PyTorch**: Deep learning framework
- **Transformers**: Model library
## π― Usage Workflow
### **1. Setup Phase**
```bash
python setup_launch.py # Configure with user info
python test_pipeline.py # Verify all components
```
### **2. Execution Phase**
```bash
chmod +x launch.sh # Make executable
./launch.sh # Run complete pipeline
```
### **3. Monitoring Phase**
- Track progress in Trackio Space
- Monitor metrics in real-time
- Check logs for issues
- Validate results
### **4. Results Phase**
- Access model on HF Hub
- Review training summary
- Test model performance
- Share results
## π Quality Assurance
### **Testing Coverage**
- Import testing for all modules
- Script availability verification
- Configuration validation
- CUDA and token testing
- Component integration testing
### **Documentation**
- Comprehensive README
- Step-by-step guides
- Troubleshooting section
- Advanced usage examples
### **Error Recovery**
- Graceful error handling
- Detailed error messages
- Recovery mechanisms
- Fallback options
## π Future Enhancements
### **Planned Improvements**
- Multi-GPU training support
- Distributed training
- Advanced hyperparameter tuning
- Custom dataset upload
- Model evaluation metrics
- Automated testing pipeline
### **Extensibility**
- Plugin architecture for custom components
- Configuration templates
- Custom monitoring backends
- Advanced deployment options
## π Success Metrics
### **Pipeline Completeness**
- β
All 16 steps implemented
- β
Error handling at each step
- β
Monitoring integration
- β
Documentation complete
### **User Experience**
- β
Simple setup process
- β
Clear error messages
- β
Comprehensive documentation
- β
Testing utilities
### **Technical Quality**
- β
Import path fixes
- β
Configuration management
- β
Monitoring integration
- β
Deployment automation
## π Conclusion
The SmolLM3 end-to-end pipeline provides a complete solution for fine-tuning with integrated monitoring, automated deployment, and comprehensive documentation. The refactored codebase is now production-ready with proper error handling, testing, and user experience considerations.
**Key Achievements:**
- Complete end-to-end automation
- Integrated monitoring and tracking
- Comprehensive error handling
- Production-ready deployment
- Extensive documentation
- Testing and validation suite
The pipeline is now ready for users to easily fine-tune SmolLM3 models with full monitoring and deployment capabilities. |