Spaces:
Running
Running
File size: 9,447 Bytes
5fe83da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
# Trackio Deployment Guide for Hugging Face Spaces
This guide provides step-by-step instructions for deploying Trackio experiment tracking to Hugging Face Spaces and integrating it with your SmolLM3 fine-tuning pipeline.
## Prerequisites
- Hugging Face account
- Hugging Face CLI installed (`pip install huggingface_hub`)
- Git configured with your Hugging Face credentials
## Method 1: Automated Deployment (Recommended)
### Step 1: Run the Deployment Script
```bash
python deploy_trackio_space.py
```
The script will prompt you for:
- Your Hugging Face username
- Space name (e.g., `trackio-monitoring`)
- Hugging Face token (needs a write token obviously)
### Step 2: Wait for Build
After deployment, wait 2-5 minutes for the Space to build and become available.
### Step 3: Test the Interface
Visit your Space URL to test the interface:
```
https://huggingface.co/spaces/YOUR_USERNAME/YOUR_SPACE_NAME
```
## Method 2: Manual Deployment
### Step 1: Create a New Space
1. Go to https://huggingface.co/spaces
2. Click "Create new Space"
3. Configure the Space:
- **Owner**: Your username
- **Space name**: `trackio-monitoring` (or your preferred name)
- **SDK**: Gradio
- **Hardware**: CPU (Basic)
- **License**: MIT
### Step 2: Upload Files
Upload these files to your Space:
#### `app.py`
The main Gradio interface (already created in this repository)
#### `requirements_space.txt`
```
gradio>=4.0.0
gradio-client>=0.10.0
requests>=2.31.0
numpy>=1.24.0
pandas>=2.0.0
jsonschema>=4.17.0
plotly>=5.15.0
matplotlib>=3.7.0
python-dotenv>=1.0.0
```
#### `README.md`
```markdown
# Trackio Experiment Tracking
A Gradio interface for experiment tracking and monitoring.
## Features
- Create and manage experiments
- Log training metrics and parameters
- View experiment details and results
- Update experiment status
## Usage
1. Create a new experiment using the "Create Experiment" tab
2. Log metrics during training using the "Log Metrics" tab
3. View experiment details using the "View Experiments" tab
4. Update experiment status using the "Update Status" tab
## Integration
To connect your training script to this Trackio Space:
```python
from monitoring import SmolLM3Monitor
monitor = SmolLM3Monitor(
experiment_name="my_experiment",
trackio_url="https://your-space.hf.space",
enable_tracking=True
)
```
### Step 3: Configure Space Settings
In your Space settings, ensure:
- **App file**: `app.py`
- **Python version**: 3.9 or higher
- **Hardware**: CPU (Basic) is sufficient
## Integration with Your Training Script
### Step 1: Update Your Configuration
Add Trackio settings to your training configuration:
```python
# config/train_smollm3.py
@dataclass
class SmolLM3Config:
# ... existing settings ...
# Trackio monitoring configuration
enable_tracking: bool = True
trackio_url: Optional[str] = None # Your Space URL
trackio_token: Optional[str] = None
log_artifacts: bool = True
log_metrics: bool = True
log_config: bool = True
experiment_name: Optional[str] = None
```
### Step 2: Run Training with Trackio
```bash
python train.py config/train_smollm3.py \
--dataset_dir my_dataset \
--enable_tracking \
--trackio_url "https://your-username-trackio-monitoring.hf.space" \
--experiment_name "smollm3_finetune_v1"
```
### Step 3: Monitor Your Experiments
1. **Create Experiment**: Use the "Create Experiment" tab in your Space
2. **Log Metrics**: Your training script will automatically log metrics
3. **View Results**: Use the "View Experiments" tab to see progress
4. **Update Status**: Mark experiments as completed when done
## Advanced Configuration
### Environment Variables
You can set Trackio configuration via environment variables:
```bash
export TRACKIO_URL="https://your-space.hf.space"
export TRACKIO_TOKEN="your_token_here"
```
### Custom Experiment Names
```bash
python train.py config/train_smollm3.py \
--experiment_name "smollm3_high_lr_experiment" \
--trackio_url "https://your-space.hf.space"
```
### Multiple Experiments
You can run multiple experiments and track them separately:
```bash
# Experiment 1
python train.py config/train_smollm3.py \
--experiment_name "smollm3_baseline" \
--learning_rate 2e-5
# Experiment 2
python train.py config/train_smollm3.py \
--experiment_name "smollm3_high_lr" \
--learning_rate 5e-5
```
## Using the Trackio Interface
### Creating Experiments
1. Go to the "Create Experiment" tab
2. Enter experiment name (e.g., "smollm3_finetune_v1")
3. Add description (optional)
4. Click "Create Experiment"
5. Note the experiment ID for logging metrics
### Logging Metrics
1. Go to the "Log Metrics" tab
2. Enter your experiment ID
3. Add metrics in JSON format:
```json
{
"loss": 0.5,
"accuracy": 0.85,
"learning_rate": 2e-5
}
```
4. Add step number (optional)
5. Click "Log Metrics"
### Viewing Experiments
1. Go to the "View Experiments" tab
2. Enter experiment ID to view specific experiment
3. Or click "List All Experiments" to see all experiments
### Updating Status
1. Go to the "Update Status" tab
2. Enter experiment ID
3. Select new status (running, completed, failed, paused)
4. Click "Update Status"
## Troubleshooting
### Common Issues
#### 1. Space Not Building
- Check that all required files are uploaded
- Verify `app.py` is the main file
- Check the Space logs for errors
#### 2. Connection Errors
- Verify your Space URL is correct
- Check that the Space is running (not paused)
- Ensure your training script can reach the Space URL
#### 3. Missing Metrics
- Check that `enable_tracking=True` in your config
- Verify the Trackio URL is correct
- Check training logs for monitoring errors
#### 4. Authentication Issues
- If using tokens, verify they're correct
- Check Hugging Face account permissions
- Ensure Space is public or you have access
### Debug Mode
Enable debug logging in your training script:
```python
import logging
logging.basicConfig(level=logging.DEBUG)
```
### Manual Testing
Test the Trackio interface manually:
1. Create an experiment
2. Log some test metrics
3. View the experiment details
4. Update the status
## Security Considerations
### Public vs Private Spaces
- **Public Spaces**: Anyone can view and use the interface
- **Private Spaces**: Only you and collaborators can access
### Token Management
- Store tokens securely (environment variables)
- Don't commit tokens to version control
- Use Hugging Face's token management
### Data Privacy
- Trackio stores experiment data in the Space
- Consider data retention policies
- Be mindful of sensitive information in experiment names
## Performance Optimization
### Space Configuration
- Use CPU (Basic) for the interface (sufficient for tracking)
- Consider GPU only for actual training
- Monitor Space usage and limits
### Efficient Logging
- Log metrics at reasonable intervals (every 10-100 steps)
- Avoid logging too frequently to prevent rate limiting
- Use batch logging when possible
## Monitoring Best Practices
### Experiment Naming
Use descriptive names:
- `smollm3_baseline_v1`
- `smollm3_high_lr_experiment`
- `smollm3_dpo_training`
### Metric Logging
Log relevant metrics:
- Training loss
- Validation loss
- Learning rate
- GPU memory usage
- Training time
### Status Management
- Mark experiments as "running" when starting
- Update to "completed" when finished
- Mark as "failed" if errors occur
- Use "paused" for temporary stops
## Integration Examples
### Basic Integration
```python
from monitoring import SmolLM3Monitor
# Initialize monitor
monitor = SmolLM3Monitor(
experiment_name="my_experiment",
trackio_url="https://your-space.hf.space",
enable_tracking=True
)
# Log configuration
monitor.log_config(config_dict)
# Log metrics during training
monitor.log_metrics({"loss": 0.5}, step=100)
# Log final results
monitor.log_training_summary(final_results)
```
### Advanced Integration
```python
# Custom monitoring setup
monitor = SmolLM3Monitor(
experiment_name="smollm3_advanced",
trackio_url="https://your-space.hf.space",
enable_tracking=True,
log_artifacts=True,
log_metrics=True,
log_config=True
)
# Log system metrics
monitor.log_system_metrics(step=current_step)
# Log model checkpoint
monitor.log_model_checkpoint("checkpoint-1000", step=1000)
# Log evaluation results
monitor.log_evaluation_results(eval_results, step=1000)
```
## Support and Resources
### Documentation
- [Hugging Face Spaces Documentation](https://huggingface.co/docs/hub/spaces)
- [Gradio Documentation](https://gradio.app/docs/)
- [Trackio GitHub Repository](https://github.com/Josephrp/trackio)
### Community
- [Hugging Face Forums](https://discuss.huggingface.co/)
- [Gradio Discord](https://discord.gg/feTf9z3Z)
### Issues and Feedback
- Report issues on the project repository
- Provide feedback on the Trackio interface
- Suggest improvements for the monitoring system
## Conclusion
You now have a complete Trackio monitoring system deployed on Hugging Face Spaces! This setup provides:
- β
Easy experiment tracking and monitoring
- β
Real-time metric logging
- β
Web-based interface for experiment management
- β
Integration with your SmolLM3 fine-tuning pipeline
- β
Scalable and accessible monitoring solution
Start tracking your experiments and gain insights into your model training process! |