Spaces:
Running
Running
File size: 45,949 Bytes
5f8b28d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 |
#!/usr/bin/env python3
"""
Gradio Interface for SmolLM3/GPT-OSS Fine-tuning Pipeline
This app mirrors the core flow of launch.sh with a click-and-run UI.
Tokens are read from environment variables:
- HF_WRITE_TOKEN (required)
- HF_READ_TOKEN (optional; used to switch the Trackio Space token after training)
Key steps (configurable via UI):
1) Optional HF Dataset repo setup for Trackio
2) Optional Trackio Space deployment
3) Training (SmolLM3 or GPT-OSS)
4) Push trained model to the HF Hub
5) Optional switch Trackio HF_TOKEN to read token
This uses the existing scripts in scripts/ and config/ to avoid code duplication.
"""
from __future__ import annotations
import os
import sys
import time
import json
import shlex
import traceback
import importlib.util
from dataclasses import dataclass
from datetime import datetime
from pathlib import Path
from typing import Dict, Any, Generator, Optional, Tuple
# Third-party
try:
import gradio as gr # type: ignore
except Exception as _e:
raise RuntimeError(
"Gradio is required. Please install it first: pip install gradio"
) from _e
# --------------------------------------------------------------------------------------
# Utilities
# --------------------------------------------------------------------------------------
PROJECT_ROOT = Path(__file__).resolve().parent
def mask_token(token: Optional[str]) -> str:
if not token:
return "<not set>"
token = str(token)
if len(token) <= 8:
return "*" * len(token)
return f"{token[:4]}****{token[-4:]}"
def get_python() -> str:
return sys.executable or "python"
def get_username_from_token(token: str) -> Optional[str]:
try:
from huggingface_hub import HfApi # type: ignore
api = HfApi(token=token)
info = api.whoami()
if isinstance(info, dict):
return info.get("name") or info.get("username")
if isinstance(info, str):
return info
except Exception:
return None
return None
def detect_nvidia_driver() -> Tuple[bool, str]:
"""Detect NVIDIA driver/GPU presence with multiple strategies.
Returns (available, human_message).
"""
# 1) Try torch CUDA
try:
import torch # type: ignore
if torch.cuda.is_available():
try:
num = torch.cuda.device_count()
names = [torch.cuda.get_device_name(i) for i in range(num)]
return True, f"NVIDIA GPU detected: {', '.join(names)}"
except Exception:
return True, "NVIDIA GPU detected (torch.cuda available)"
except Exception:
pass
# 2) Try NVML via pynvml
try:
import pynvml # type: ignore
try:
pynvml.nvmlInit()
cnt = pynvml.nvmlDeviceGetCount()
names = []
for i in range(cnt):
h = pynvml.nvmlDeviceGetHandleByIndex(i)
names.append(pynvml.nvmlDeviceGetName(h).decode("utf-8", errors="ignore"))
drv = pynvml.nvmlSystemGetDriverVersion().decode("utf-8", errors="ignore")
pynvml.nvmlShutdown()
if cnt > 0:
return True, f"NVIDIA driver {drv}; GPUs: {', '.join(names)}"
except Exception:
pass
except Exception:
pass
# 3) Try nvidia-smi
try:
import subprocess
res = subprocess.run(["nvidia-smi", "-L"], capture_output=True, text=True, timeout=3)
if res.returncode == 0 and res.stdout.strip():
return True, res.stdout.strip().splitlines()[0]
except Exception:
pass
return False, "No NVIDIA driver/GPU detected"
def duplicate_space_hint() -> str:
space_id = os.environ.get("SPACE_ID") or os.environ.get("HF_SPACE_ID")
if space_id:
space_url = f"https://huggingface.co/spaces/{space_id}"
dup_url = f"{space_url}?duplicate=true"
return (
f"ℹ️ No NVIDIA driver detected. If you're on Hugging Face Spaces, "
f"please duplicate this Space to GPU hardware: [Duplicate this Space]({dup_url})."
)
return (
"ℹ️ No NVIDIA driver detected. To enable training, run on a machine with an NVIDIA GPU/driver "
"or duplicate this Space on Hugging Face with GPU hardware."
)
def _write_generated_config(filename: str, content: str) -> Path:
"""Write a generated config under config/ and return the full path."""
cfg_dir = PROJECT_ROOT / "config"
cfg_dir.mkdir(parents=True, exist_ok=True)
path = cfg_dir / filename
with open(path, "w", encoding="utf-8") as f:
f.write(content)
return path
def generate_medical_o1_config_file(
dataset_config: str,
system_message: Optional[str],
developer_message: Optional[str],
num_train_epochs: float,
batch_size: int,
gradient_accumulation_steps: int,
learning_rate: float,
max_seq_length: int,
) -> Path:
"""Create a GPT-OSS Medical o1 SFT config file from user inputs."""
# Sanitize quotes in messages
def _q(s: Optional[str]) -> str:
if s is None or s == "":
return "None"
return repr(s)
py = f"""
from config.train_gpt_oss_custom import GPTOSSEnhancedCustomConfig
config = GPTOSSEnhancedCustomConfig(
dataset_name="FreedomIntelligence/medical-o1-reasoning-SFT",
dataset_config={repr(dataset_config)},
dataset_split="train",
dataset_format="medical_o1_sft",
# Field mapping and prefixes
input_field="Question",
target_field="Response",
question_field="Question",
reasoning_field="Complex_CoT",
response_field="Response",
reason_prefix="Reasoning: ",
answer_prefix="Final Answer: ",
# Optional context
system_message={_q(system_message)},
developer_message={_q(developer_message)},
# Training hyperparameters
num_train_epochs={num_train_epochs},
batch_size={batch_size},
gradient_accumulation_steps={gradient_accumulation_steps},
learning_rate={learning_rate},
min_lr=2e-5,
weight_decay=0.01,
warmup_ratio=0.03,
# Sequence length
max_seq_length={max_seq_length},
# Precision & performance
fp16=False,
bf16=True,
dataloader_num_workers=4,
dataloader_pin_memory=True,
dataloader_prefetch_factor=2,
group_by_length=True,
remove_unused_columns=True,
# LoRA & quantization
use_lora=True,
lora_config={
"r": 16,
"lora_alpha": 32,
"lora_dropout": 0.05,
"target_modules": "all-linear",
"target_parameters": [
"7.mlp.experts.gate_up_proj",
"7.mlp.experts.down_proj",
"15.mlp.experts.gate_up_proj",
"15.mlp.experts.down_proj",
"23.mlp.experts.gate_up_proj",
"23.mlp.experts.down_proj",
],
"bias": "none",
"task_type": "CAUSAL_LM",
},
use_quantization=True,
quantization_config={
"dequantize": True,
"load_in_4bit": False,
},
# Logging & evaluation
eval_strategy="steps",
eval_steps=100,
logging_steps=10,
save_strategy="steps",
save_steps=500,
save_total_limit=3,
metric_for_best_model="eval_loss",
greater_is_better=False,
)
"""
return _write_generated_config("_generated_gpt_oss_medical_o1_sft.py", py)
def generate_gpt_oss_custom_config_file(
dataset_name: str,
dataset_split: str,
dataset_format: str,
input_field: str,
target_field: Optional[str],
system_message: Optional[str],
developer_message: Optional[str],
model_identity: Optional[str],
max_samples: Optional[int],
min_length: int,
max_length: Optional[int],
num_train_epochs: float,
batch_size: int,
gradient_accumulation_steps: int,
learning_rate: float,
min_lr: float,
weight_decay: float,
warmup_ratio: float,
max_seq_length: int,
lora_r: int,
lora_alpha: int,
lora_dropout: float,
mixed_precision: str, # "bf16"|"fp16"|"fp32"
num_workers: int,
quantization_type: str, # "mxfp4"|"bnb4"|"none"
max_grad_norm: float,
logging_steps: int,
eval_steps: int,
save_steps: int,
) -> Path:
# Precision flags
if mixed_precision.lower() == "bf16":
fp16_flag = False
bf16_flag = True
elif mixed_precision.lower() == "fp16":
fp16_flag = True
bf16_flag = False
else:
fp16_flag = False
bf16_flag = False
# Quantization flags/config
if quantization_type == "mxfp4":
use_quant = True
quant_cfg = '{"dequantize": True, "load_in_4bit": False}'
elif quantization_type == "bnb4":
use_quant = True
quant_cfg = '{"dequantize": False, "load_in_4bit": True, "bnb_4bit_compute_dtype": "bfloat16", "bnb_4bit_use_double_quant": True, "bnb_4bit_quant_type": "nf4"}'
else:
use_quant = False
quant_cfg = '{"dequantize": False, "load_in_4bit": False}'
def _q(s: Optional[str]) -> str:
if s is None or s == "":
return "None"
return repr(s)
py = f"""
from config.train_gpt_oss_custom import GPTOSSEnhancedCustomConfig
config = GPTOSSEnhancedCustomConfig(
# Dataset
dataset_name={repr(dataset_name)},
dataset_split={repr(dataset_split)},
dataset_format={repr(dataset_format)},
input_field={repr(input_field)},
target_field={repr(target_field)} if {repr(target_field)} != 'None' else None,
system_message={_q(system_message)},
developer_message={_q(developer_message)},
max_samples={repr(max_samples)} if {repr(max_samples)} != 'None' else None,
min_length={min_length},
max_length={repr(max_length)} if {repr(max_length)} != 'None' else None,
# Training hyperparameters
num_train_epochs={num_train_epochs},
batch_size={batch_size},
gradient_accumulation_steps={gradient_accumulation_steps},
learning_rate={learning_rate},
min_lr={min_lr},
weight_decay={weight_decay},
warmup_ratio={warmup_ratio},
max_grad_norm={max_grad_norm},
# Model
max_seq_length={max_seq_length},
# Precision
fp16={str(fp16_flag)},
bf16={str(bf16_flag)},
# LoRA
lora_config={{
"r": {lora_r},
"lora_alpha": {lora_alpha},
"lora_dropout": {lora_dropout},
"target_modules": "all-linear",
"bias": "none",
"task_type": "CAUSAL_LM",
}},
# Quantization
use_quantization={str(use_quant)},
quantization_config={quant_cfg},
# Performance
dataloader_num_workers={num_workers},
dataloader_pin_memory=True,
group_by_length=True,
# Logging & eval
logging_steps={logging_steps},
eval_steps={eval_steps},
save_steps={save_steps},
# Chat template (Harmony)
chat_template_kwargs={{
"add_generation_prompt": True,
"tokenize": False,
"auto_insert_role": True,
"reasoning_effort": "medium",
"model_identity": {_q(model_identity) if _q(model_identity) != 'None' else repr('You are GPT-Tonic, a large language model trained by TonicAI.')},
"builtin_tools": [],
}},
)
"""
return _write_generated_config("_generated_gpt_oss_custom.py", py)
def generate_smollm3_custom_config_file(
model_name: str,
dataset_name: Optional[str],
max_seq_length: int,
batch_size: int,
gradient_accumulation_steps: int,
learning_rate: float,
save_steps: int,
eval_steps: int,
logging_steps: int,
filter_bad_entries: bool,
input_field: str,
target_field: str,
sample_size: Optional[int],
sample_seed: int,
trainer_type: str,
) -> Path:
# Create subclass to include dataset fields similar to other configs
def _bool(b: bool) -> str:
return "True" if b else "False"
ds_section = """
# HF Dataset configuration
dataset_name={}
dataset_split="train"
input_field={}
target_field={}
filter_bad_entries={}
bad_entry_field="bad_entry"
sample_size={}
sample_seed={}
""".format(
repr(dataset_name) if dataset_name else "None",
repr(input_field),
repr(target_field),
_bool(filter_bad_entries),
repr(sample_size) if sample_size is not None else "None",
sample_seed,
)
py = f"""
from dataclasses import dataclass
from typing import Optional
from config.train_smollm3 import SmolLM3Config
@dataclass
class SmolLM3GeneratedConfig(SmolLM3Config):
{ds_section}
config = SmolLM3GeneratedConfig(
trainer_type={repr(trainer_type.lower())},
model_name={repr(model_name)},
max_seq_length={max_seq_length},
use_flash_attention=True,
use_gradient_checkpointing=True,
batch_size={batch_size},
gradient_accumulation_steps={gradient_accumulation_steps},
learning_rate={learning_rate},
weight_decay=0.01,
warmup_steps=100,
max_iters=None,
eval_interval={eval_steps},
log_interval={logging_steps},
save_interval={save_steps},
optimizer="adamw",
beta1=0.9,
beta2=0.95,
eps=1e-8,
scheduler="cosine",
min_lr=1e-6,
fp16=True,
bf16=False,
save_steps={save_steps},
eval_steps={eval_steps},
logging_steps={logging_steps},
save_total_limit=3,
eval_strategy="steps",
metric_for_best_model="eval_loss",
greater_is_better=False,
load_best_model_at_end=True,
)
"""
return _write_generated_config("_generated_smollm3_custom.py", py)
def ensure_dataset_repo(username: str, dataset_name: str, token: str) -> Tuple[str, bool, str]:
"""Create or ensure dataset repo exists. Returns (repo_id, created_or_exists, message)."""
from huggingface_hub import create_repo # type: ignore
repo_id = f"{username}/{dataset_name}"
try:
create_repo(repo_id=repo_id, repo_type="dataset", token=token, exist_ok=True, private=False)
return repo_id, True, f"Dataset repo ready: {repo_id}"
except Exception as e:
return repo_id, False, f"Failed to create dataset repo {repo_id}: {e}"
def import_config_object(config_path: Path) -> Optional[Any]:
"""Import a config file and return its 'config' object if present, else None."""
try:
spec = importlib.util.spec_from_file_location("config_module", str(config_path))
if not spec or not spec.loader:
return None
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module) # type: ignore
if hasattr(module, "config"):
return getattr(module, "config")
return None
except Exception:
return None
def run_command_stream(args: list[str], env: Dict[str, str], cwd: Optional[Path] = None) -> Generator[str, None, int]:
"""Run a command and yield stdout/stderr lines as they arrive. Returns exit code at the end."""
import subprocess
yield f"$ {' '.join(shlex.quote(a) for a in ([get_python()] + args))}"
process = subprocess.Popen(
[get_python()] + args,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
env=env,
cwd=str(cwd or PROJECT_ROOT),
bufsize=1,
universal_newlines=True,
)
assert process.stdout is not None
for line in iter(process.stdout.readline, ""):
yield line.rstrip()
process.stdout.close()
code = process.wait()
yield f"[exit_code={code}]"
return code
# --------------------------------------------------------------------------------------
# Configuration Mappings (mirror launch.sh)
# --------------------------------------------------------------------------------------
SMOL_CONFIGS = {
"Basic Training": {
"config_file": "config/train_smollm3.py",
"default_model": "HuggingFaceTB/SmolLM3-3B",
},
"H100 Lightweight (Rapid)": {
"config_file": "config/train_smollm3_h100_lightweight.py",
"default_model": "HuggingFaceTB/SmolLM3-3B",
},
"A100 Large Scale": {
"config_file": "config/train_smollm3_openhermes_fr_a100_large.py",
"default_model": "HuggingFaceTB/SmolLM3-3B",
},
"Multiple Passes": {
"config_file": "config/train_smollm3_openhermes_fr_a100_multiple_passes.py",
"default_model": "HuggingFaceTB/SmolLM3-3B",
},
}
GPT_OSS_CONFIGS = {
"GPT-OSS Basic Training": {
"config_file": "config/train_gpt_oss_basic.py",
"default_model": "openai/gpt-oss-20b",
},
"GPT-OSS H100 Optimized": {
"config_file": "config/train_gpt_oss_h100_optimized.py",
"default_model": "openai/gpt-oss-20b",
},
"GPT-OSS Multilingual Reasoning": {
"config_file": "config/train_gpt_oss_multilingual_reasoning.py",
"default_model": "openai/gpt-oss-20b",
},
"GPT-OSS Memory Optimized": {
"config_file": "config/train_gpt_oss_memory_optimized.py",
"default_model": "openai/gpt-oss-20b",
},
"GPT-OSS OpenHermes-FR (Recommended)": {
"config_file": "config/train_gpt_oss_openhermes_fr.py",
"default_model": "openai/gpt-oss-20b",
},
"GPT-OSS OpenHermes-FR Memory Optimized": {
"config_file": "config/train_gpt_oss_openhermes_fr_memory_optimized.py",
"default_model": "openai/gpt-oss-20b",
},
# Custom dataset and medical SFT can be added later as advanced UI panels
}
def get_config_map(family: str) -> Dict[str, Dict[str, str]]:
return SMOL_CONFIGS if family == "SmolLM3" else GPT_OSS_CONFIGS
# --------------------------------------------------------------------------------------
# Pipeline Orchestration
# --------------------------------------------------------------------------------------
@dataclass
class PipelineInputs:
model_family: str
config_choice: str
trainer_type: str # "SFT" | "DPO"
monitoring_mode: str # "both" | "trackio" | "dataset" | "none"
experiment_name: str
repo_short: str
author_name: str
model_description: str
trackio_space_name: Optional[str]
deploy_trackio_space: bool
create_dataset_repo: bool
push_to_hub: bool
switch_to_read_after: bool
scheduler_override: Optional[str]
min_lr: Optional[float]
min_lr_rate: Optional[float]
def make_defaults(model_family: str) -> Tuple[str, str]:
ts = datetime.now().strftime("%Y%m%d_%H%M%S")
family_slug = "gpt-oss" if model_family == "GPT-OSS" else "smollm3"
exp = f"smolfactory-{family_slug}_{ts}"
repo_short = f"smolfactory-{datetime.now().strftime('%Y%m%d')}"
return exp, repo_short
def run_pipeline(params: PipelineInputs) -> Generator[str, None, None]:
# Tokens from environment
write_token = os.environ.get("HF_WRITE_TOKEN") or os.environ.get("HF_TOKEN")
read_token = os.environ.get("HF_READ_TOKEN")
if not write_token:
yield "❌ HF_WRITE_TOKEN (or HF_TOKEN) is not set in the environment."
return
# Resolve username
username = get_username_from_token(write_token) or os.environ.get("HF_USERNAME")
if not username:
yield "❌ Could not resolve Hugging Face username from token."
return
yield f"✅ Authenticated as: {username}"
# Compute Trackio URL if applicable
trackio_url: Optional[str] = None
if params.monitoring_mode != "none" and params.trackio_space_name:
trackio_url = f"https://huggingface.co/spaces/{username}/{params.trackio_space_name}"
yield f"Trackio Space URL: {trackio_url}"
# Decide space deploy token per monitoring mode
space_deploy_token = write_token if params.monitoring_mode in ("both", "trackio") else (read_token or write_token)
# Dataset repo setup
dataset_repo = f"{username}/trackio-experiments"
if params.create_dataset_repo and params.monitoring_mode != "none":
yield f"Creating/ensuring dataset repo exists: {dataset_repo}"
rid, ok, msg = ensure_dataset_repo(username, "trackio-experiments", write_token)
yield ("✅ " if ok else "⚠️ ") + msg
dataset_repo = rid
# Resolve config file and model name
conf_map = get_config_map(params.model_family)
if params.config_choice not in conf_map:
yield f"❌ Unknown config choice: {params.config_choice}"
return
config_file = PROJECT_ROOT / conf_map[params.config_choice]["config_file"]
base_model_fallback = conf_map[params.config_choice]["default_model"]
if not config_file.exists():
yield f"❌ Config file not found: {config_file}"
return
cfg_obj = import_config_object(config_file)
base_model = getattr(cfg_obj, "model_name", base_model_fallback) if cfg_obj else base_model_fallback
dataset_name = getattr(cfg_obj, "dataset_name", None) if cfg_obj else None
batch_size = getattr(cfg_obj, "batch_size", None) if cfg_obj else None
learning_rate = getattr(cfg_obj, "learning_rate", None) if cfg_obj else None
max_seq_length = getattr(cfg_obj, "max_seq_length", None) if cfg_obj else None
# Prepare env for subprocesses
env = os.environ.copy()
env["HF_TOKEN"] = write_token
env["HUGGING_FACE_HUB_TOKEN"] = write_token
env["HF_USERNAME"] = username
env["TRACKIO_DATASET_REPO"] = dataset_repo
env["MONITORING_MODE"] = params.monitoring_mode
# Optional Trackio Space deployment
if params.deploy_trackio_space and params.monitoring_mode != "none" and params.trackio_space_name:
yield f"\n=== Deploying Trackio Space: {params.trackio_space_name} ==="
# deploy_trackio_space.py expects: space_name, token, git_email, git_name, dataset_repo
args = [
str(PROJECT_ROOT / "scripts/trackio_tonic/deploy_trackio_space.py"),
params.trackio_space_name,
space_deploy_token,
f"{username}@users.noreply.hf.co",
username,
dataset_repo,
]
for line in run_command_stream(args, env, cwd=PROJECT_ROOT / "scripts/trackio_tonic"):
yield line
# Training output directory
out_dir = PROJECT_ROOT / "outputs" / f"{params.experiment_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
out_dir.mkdir(parents=True, exist_ok=True)
yield f"\nOutput directory: {out_dir}"
# Scheduler overrides (GPT-OSS only)
if params.model_family == "GPT-OSS" and params.scheduler_override:
env["GPT_OSS_SCHEDULER"] = params.scheduler_override
if params.min_lr is not None:
env["GPT_OSS_MIN_LR"] = str(params.min_lr)
if params.min_lr_rate is not None:
env["GPT_OSS_MIN_LR_RATE"] = str(params.min_lr_rate)
# Start training
yield f"\n=== Starting Training ({params.model_family}) ==="
if params.model_family == "GPT-OSS":
args = [
str(PROJECT_ROOT / "scripts/training/train_gpt_oss.py"),
"--config", str(config_file),
"--experiment-name", params.experiment_name,
"--output-dir", str(out_dir),
"--trackio-url", trackio_url or "",
"--trainer-type", params.trainer_type.lower(),
]
else:
args = [
str(PROJECT_ROOT / "scripts/training/train.py"),
"--config", str(config_file),
"--experiment-name", params.experiment_name,
"--output-dir", str(out_dir),
"--trackio-url", trackio_url or "",
"--trainer-type", params.trainer_type.lower(),
]
# Stream training logs
train_failed = False
for line in run_command_stream(args, env):
yield line
if line.strip().startswith("[exit_code=") and not line.strip().endswith("[exit_code=0]"):
train_failed = True
if train_failed:
yield "❌ Training failed. Aborting remaining steps."
return
# Push to Hub
if params.push_to_hub:
yield "\n=== Pushing Model to Hugging Face Hub ==="
repo_name = f"{username}/{params.repo_short}"
if params.model_family == "GPT-OSS":
push_args = [
str(PROJECT_ROOT / "scripts/model_tonic/push_gpt_oss_to_huggingface.py"),
str(out_dir),
repo_name,
"--token", write_token,
"--trackio-url", trackio_url or "",
"--experiment-name", params.experiment_name,
"--dataset-repo", dataset_repo,
"--author-name", params.author_name or username,
"--model-description", params.model_description,
"--training-config-type", params.config_choice,
"--model-name", base_model,
]
if dataset_name:
push_args += ["--dataset-name", str(dataset_name)]
if batch_size is not None:
push_args += ["--batch-size", str(batch_size)]
if learning_rate is not None:
push_args += ["--learning-rate", str(learning_rate)]
if max_seq_length is not None:
push_args += ["--max-seq-length", str(max_seq_length)]
push_args += ["--trainer-type", params.trainer_type]
else:
push_args = [
str(PROJECT_ROOT / "scripts/model_tonic/push_to_huggingface.py"),
str(out_dir),
repo_name,
"--token", write_token,
"--trackio-url", trackio_url or "",
"--experiment-name", params.experiment_name,
"--dataset-repo", dataset_repo,
"--author-name", params.author_name or username,
"--model-description", params.model_description,
"--training-config-type", params.config_choice,
"--model-name", base_model,
]
if dataset_name:
push_args += ["--dataset-name", str(dataset_name)]
if batch_size is not None:
push_args += ["--batch-size", str(batch_size)]
if learning_rate is not None:
push_args += ["--learning-rate", str(learning_rate)]
if max_seq_length is not None:
push_args += ["--max-seq-length", str(max_seq_length)]
push_args += ["--trainer-type", params.trainer_type]
for line in run_command_stream(push_args, env):
yield line
# Switch Space token to read-only (security)
if params.switch_to_read_after and params.monitoring_mode in ("both", "trackio") and params.trackio_space_name and read_token:
yield "\n=== Switching Trackio Space HF_TOKEN to READ token ==="
space_id = f"{username}/{params.trackio_space_name}"
sw_args = [
str(PROJECT_ROOT / "scripts/trackio_tonic/switch_to_read_token.py"),
space_id,
read_token,
write_token,
]
for line in run_command_stream(sw_args, env, cwd=PROJECT_ROOT / "scripts/trackio_tonic"):
yield line
elif params.switch_to_read_after and not read_token:
yield "⚠️ HF_READ_TOKEN not set; skipping token switch."
# Final summary
yield "\n🎉 Pipeline completed."
if params.monitoring_mode != "none" and trackio_url:
yield f"Trackio: {trackio_url}"
yield f"Model repo (if pushed): https://huggingface.co/{username}/{params.repo_short}"
yield f"Outputs: {out_dir}"
# --------------------------------------------------------------------------------------
# Gradio UI
# --------------------------------------------------------------------------------------
MODEL_FAMILIES = ["SmolLM3", "GPT-OSS"]
TRAINER_CHOICES = ["SFT", "DPO"]
MONITORING_CHOICES = ["both", "trackio", "dataset", "none"]
SCHEDULER_CHOICES = [None, "linear", "cosine", "cosine_with_min_lr", "constant"]
def ui_defaults(family: str) -> Tuple[str, str, str, str]:
exp, repo_short = make_defaults(family)
default_desc = (
"A fine-tuned GPT-OSS-20B model optimized for multilingual reasoning and instruction following."
if family == "GPT-OSS"
else "A fine-tuned SmolLM3-3B model optimized for instruction following and French language tasks."
)
trackio_space_name = f"trackio-monitoring-{datetime.now().strftime('%Y%m%d')}"
return exp, repo_short, default_desc, trackio_space_name
def on_family_change(family: str) -> Tuple[list[str], str, str, str, str]:
confs = list(get_config_map(family).keys())
exp, repo_short, desc, space = ui_defaults(family)
return confs, confs[0] if confs else "", exp, repo_short, desc
def start_pipeline(
model_family: str,
config_choice: str,
trainer_type: str,
monitoring_mode: str,
experiment_name: str,
repo_short: str,
author_name: str,
model_description: str,
trackio_space_name: str,
deploy_trackio_space: bool,
create_dataset_repo: bool,
push_to_hub: bool,
switch_to_read_after: bool,
scheduler_override: Optional[str],
min_lr: Optional[float],
min_lr_rate: Optional[float],
) -> Generator[str, None, None]:
try:
params = PipelineInputs(
model_family=model_family,
config_choice=config_choice,
trainer_type=trainer_type,
monitoring_mode=monitoring_mode,
experiment_name=experiment_name,
repo_short=repo_short,
author_name=author_name,
model_description=model_description,
trackio_space_name=trackio_space_name or None,
deploy_trackio_space=deploy_trackio_space,
create_dataset_repo=create_dataset_repo,
push_to_hub=push_to_hub,
switch_to_read_after=switch_to_read_after,
scheduler_override=(scheduler_override or None),
min_lr=min_lr,
min_lr_rate=min_lr_rate,
)
# Show token presence
write_token = os.environ.get("HF_WRITE_TOKEN") or os.environ.get("HF_TOKEN")
read_token = os.environ.get("HF_READ_TOKEN")
yield f"HF_WRITE_TOKEN: {mask_token(write_token)}"
yield f"HF_READ_TOKEN: {mask_token(read_token)}"
# Run the orchestrated pipeline
for line in run_pipeline(params):
yield line
# Small delay for smoother streaming
time.sleep(0.01)
except Exception as e:
yield f"❌ Error: {e}"
tb = traceback.format_exc(limit=2)
yield tb
with gr.Blocks(title="SmolLM3 / GPT-OSS Fine-tuning Pipeline") as demo:
# GPU/driver detection banner
has_gpu, gpu_msg = detect_nvidia_driver()
if has_gpu:
gr.Markdown(f"""
**SmolLM3 / GPT-OSS Fine-tuning Pipeline**
- {gpu_msg} — training is available on this runtime.
- Reads tokens from environment: `HF_WRITE_TOKEN` (required), `HF_READ_TOKEN` (optional)
- Select a config and run training; optionally deploy Trackio and push to Hub
""")
else:
gr.Markdown(f"""
**SmolLM3 / GPT-OSS Fine-tuning Pipeline**
- {duplicate_space_hint()}
- Reads tokens from environment: `HF_WRITE_TOKEN` (required), `HF_READ_TOKEN` (optional)
- You can still configure and push, but training requires a GPU runtime.
""")
with gr.Row():
model_family = gr.Dropdown(choices=MODEL_FAMILIES, value="SmolLM3", label="Model family")
trainer_type = gr.Radio(choices=TRAINER_CHOICES, value="SFT", label="Trainer type")
monitoring_mode = gr.Dropdown(choices=MONITORING_CHOICES, value="both", label="Monitoring mode")
config_choice = gr.Dropdown(choices=list(get_config_map("SmolLM3").keys()), value="Basic Training", label="Training configuration")
exp_default, repo_default, desc_default, trackio_space_default = ui_defaults("SmolLM3")
with gr.Row():
experiment_name = gr.Textbox(value=exp_default, label="Experiment name")
repo_short = gr.Textbox(value=repo_default, label="Model repo (short name)")
with gr.Row():
author_name = gr.Textbox(value=os.environ.get("HF_USERNAME", ""), label="Author name")
model_description = gr.Textbox(value=desc_default, label="Model description")
with gr.Row():
trackio_space_name = gr.Textbox(value=trackio_space_default, label="Trackio Space name (used when monitoring != none)")
deploy_trackio_space = gr.Checkbox(value=True, label="Deploy Trackio Space")
create_dataset_repo = gr.Checkbox(value=True, label="Create/ensure HF Dataset repo")
with gr.Row():
push_to_hub = gr.Checkbox(value=True, label="Push model to Hugging Face Hub")
switch_to_read_after = gr.Checkbox(value=True, label="Switch Space token to READ after training")
with gr.Tabs():
with gr.Tab("Run"):
with gr.Row():
model_family = gr.Dropdown(choices=MODEL_FAMILIES, value="SmolLM3", label="Model family")
trainer_type = gr.Radio(choices=TRAINER_CHOICES, value="SFT", label="Trainer type")
monitoring_mode = gr.Dropdown(choices=MONITORING_CHOICES, value="both", label="Monitoring mode")
config_choice = gr.Dropdown(choices=list(get_config_map("SmolLM3").keys()), value="Basic Training", label="Training configuration")
exp_default, repo_default, desc_default, trackio_space_default = ui_defaults("SmolLM3")
with gr.Row():
experiment_name = gr.Textbox(value=exp_default, label="Experiment name")
repo_short = gr.Textbox(value=repo_default, label="Model repo (short name)")
with gr.Row():
author_name = gr.Textbox(value=os.environ.get("HF_USERNAME", ""), label="Author name")
model_description = gr.Textbox(value=desc_default, label="Model description")
with gr.Row():
trackio_space_name = gr.Textbox(value=trackio_space_default, label="Trackio Space name (used when monitoring != none)")
deploy_trackio_space = gr.Checkbox(value=True, label="Deploy Trackio Space")
create_dataset_repo = gr.Checkbox(value=True, label="Create/ensure HF Dataset repo")
with gr.Row():
push_to_hub = gr.Checkbox(value=True, label="Push model to Hugging Face Hub")
switch_to_read_after = gr.Checkbox(value=True, label="Switch Space token to READ after training")
gr.Markdown("### Medical SFT (GPT-OSS o1)")
gr.Markdown("Configure GPT-OSS Medical o1 SFT (FreedomIntelligence/medical-o1-reasoning-SFT)")
med_dataset_config = gr.Dropdown(choices=["en", "en_mix", "zh", "zh_mix"], value="en", label="Dataset config")
med_system = gr.Textbox(value="You are GPT-Tonic, a large language model trained by TonicAI.", label="System message", lines=2)
med_developer = gr.Textbox(value="You are are GPT-Tonic, an intelligent assistant that always answers health-related queries scientifically.", label="Developer message", lines=3)
with gr.Row():
med_epochs = gr.Number(value=2.0, precision=2, label="Epochs")
med_bs = gr.Number(value=4, precision=0, label="Batch size")
med_gas = gr.Number(value=4, precision=0, label="Grad accumulation")
med_lr = gr.Number(value=2e-4, precision=6, label="Learning rate")
med_msl = gr.Number(value=2048, precision=0, label="Max seq length")
med_generate = gr.Button("Generate Medical Config")
med_status = gr.Textbox(label="Generated config path", interactive=False)
logs = gr.Textbox(value="", label="Logs", lines=20)
start_btn = gr.Button("Run Pipeline")
with gr.Tab("Advanced Config"):
with gr.Accordion("GPT-OSS Scheduler Overrides", open=False):
scheduler_override = gr.Dropdown(choices=[c for c in SCHEDULER_CHOICES if c is not None], value=None, allow_custom_value=True, label="Scheduler override")
min_lr = gr.Number(value=None, precision=6, label="min_lr (when cosine_with_min_lr)")
min_lr_rate = gr.Number(value=None, precision=6, label="min_lr_rate (when cosine_with_min_lr)")
gr.Markdown("### GPT-OSS Custom Dataset")
with gr.Row():
cds_dataset = gr.Textbox(value="legmlai/openhermes-fr", label="Dataset name")
cds_split = gr.Textbox(value="train", label="Split")
cds_format = gr.Dropdown(choices=["openhermes_fr", "messages", "text", "medical_o1_sft", "custom", "preference"], value="openhermes_fr", label="Format")
with gr.Row():
cds_input = gr.Textbox(value="prompt", label="Input field")
cds_target = gr.Textbox(value="accepted_completion", label="Target field (optional, blank for None)")
with gr.Row():
cds_sys = gr.Textbox(value="", label="System message (optional)")
cds_dev = gr.Textbox(value="", label="Developer message (optional)")
with gr.Row():
cds_identity = gr.Textbox(value="You are GPT-Tonic, a large language model trained by TonicAI.", label="Model identity (chat_template_kwargs.model_identity)")
with gr.Row():
cds_max_samples = gr.Number(value=None, precision=0, label="Max samples (optional)")
cds_min_len = gr.Number(value=10, precision=0, label="Min length")
cds_max_len = gr.Number(value=None, precision=0, label="Max length (optional)")
gr.Markdown("#### Training Hyperparameters")
with gr.Row():
cds_epochs = gr.Number(value=1.0, precision=2, label="Epochs")
cds_bs = gr.Number(value=4, precision=0, label="Batch size")
cds_gas = gr.Number(value=4, precision=0, label="Grad accumulation")
cds_lr = gr.Number(value=2e-4, precision=6, label="Learning rate")
cds_minlr = gr.Number(value=2e-5, precision=6, label="Min LR")
with gr.Row():
cds_wd = gr.Number(value=0.01, precision=6, label="Weight decay")
cds_warm = gr.Number(value=0.03, precision=6, label="Warmup ratio")
cds_msl = gr.Number(value=2048, precision=0, label="Max seq length")
gr.Markdown("#### LoRA / Precision / Quantization / Perf")
with gr.Row():
cds_lora_r = gr.Number(value=16, precision=0, label="LoRA r")
cds_lora_alpha = gr.Number(value=32, precision=0, label="LoRA alpha")
cds_lora_dropout = gr.Number(value=0.05, precision=4, label="LoRA dropout")
with gr.Row():
cds_precision = gr.Dropdown(choices=["bf16", "fp16", "fp32"], value="bf16", label="Mixed precision")
cds_workers = gr.Number(value=4, precision=0, label="Data workers")
cds_quant = gr.Dropdown(choices=["mxfp4", "bnb4", "none"], value="mxfp4", label="Quantization")
with gr.Row():
cds_mgn = gr.Number(value=1.0, precision=4, label="Max grad norm")
cds_log_steps = gr.Number(value=10, precision=0, label="Logging steps")
cds_eval_steps = gr.Number(value=100, precision=0, label="Eval steps")
cds_save_steps = gr.Number(value=500, precision=0, label="Save steps")
cds_generate = gr.Button("Generate GPT-OSS Custom Config")
cds_status = gr.Textbox(label="Generated config path", interactive=False)
gr.Markdown("### SmolLM3 Custom Configuration")
with gr.Row():
sm_model = gr.Textbox(value="HuggingFaceTB/SmolLM3-3B", label="Model name")
sm_dataset = gr.Textbox(value="legmlai/openhermes-fr", label="Dataset (optional; leave blank for local)")
with gr.Row():
sm_msl = gr.Number(value=4096, precision=0, label="Max seq length")
sm_bs = gr.Number(value=2, precision=0, label="Batch size")
sm_gas = gr.Number(value=8, precision=0, label="Grad accumulation")
sm_lr = gr.Number(value=5e-6, precision=8, label="Learning rate")
with gr.Row():
sm_save = gr.Number(value=500, precision=0, label="Save steps")
sm_eval = gr.Number(value=100, precision=0, label="Eval steps")
sm_log = gr.Number(value=10, precision=0, label="Logging steps")
with gr.Row():
sm_filter = gr.Checkbox(value=False, label="Filter bad entries")
sm_in = gr.Textbox(value="prompt", label="Input field")
sm_out = gr.Textbox(value="accepted_completion", label="Target field")
with gr.Row():
sm_sample = gr.Number(value=None, precision=0, label="Sample size (optional)")
sm_seed = gr.Number(value=42, precision=0, label="Sample seed")
sm_trainer = gr.Dropdown(choices=["SFT", "DPO"], value="SFT", label="Trainer type")
sm_generate = gr.Button("Generate SmolLM3 Custom Config")
sm_status = gr.Textbox(label="Generated config path", interactive=False)
logs = gr.Textbox(value="", label="Logs", lines=20)
start_btn = gr.Button("Run Pipeline")
# Events
model_family.change(on_family_change, inputs=model_family, outputs=[config_choice, config_choice, experiment_name, repo_short, model_description])
# Generate config handlers
med_generate.click(
lambda dc, sysm, devm, ep, bs, gas, lr, msl: str(
generate_medical_o1_config_file(
dataset_config=dc,
system_message=sysm,
developer_message=devm,
num_train_epochs=float(ep or 2.0),
batch_size=int(bs or 4),
gradient_accumulation_steps=int(gas or 4),
learning_rate=float(lr or 2e-4),
max_seq_length=int(msl or 2048),
)
),
inputs=[med_dataset_config, med_system, med_developer, med_epochs, med_bs, med_gas, med_lr, med_msl],
outputs=[med_status],
)
cds_generate.click(
lambda dname, dsplit, dformat, ifld, tfld, sm, dm, ident, ms, minl, maxl, ep, bs, gas, lr, minlr, wd, warm, msl, lr_, la, ld, prec, nw, q, mgn, logst, evst, savst: str(
generate_gpt_oss_custom_config_file(
dataset_name=dname,
dataset_split=dsplit,
dataset_format=dformat,
input_field=ifld,
target_field=(tfld or None),
system_message=sm,
developer_message=dm,
model_identity=ident,
max_samples=(int(ms) if ms is not None else None),
min_length=int(minl or 10),
max_length=(int(maxl) if maxl is not None else None),
num_train_epochs=float(ep or 1.0),
batch_size=int(bs or 4),
gradient_accumulation_steps=int(gas or 4),
learning_rate=float(lr or 2e-4),
min_lr=float(minlr or 2e-5),
weight_decay=float(wd or 0.01),
warmup_ratio=float(warm or 0.03),
max_seq_length=int(msl or 2048),
lora_r=int(lr_),
lora_alpha=int(la),
lora_dropout=float(ld),
mixed_precision=prec,
num_workers=int(nw or 4),
quantization_type=q,
max_grad_norm=float(mgn or 1.0),
logging_steps=int(logst or 10),
eval_steps=int(evst or 100),
save_steps=int(savst or 500),
)
),
inputs=[
cds_dataset, cds_split, cds_format, cds_input, cds_target, cds_sys, cds_dev, cds_identity,
cds_max_samples, cds_min_len, cds_max_len, cds_epochs, cds_bs, cds_gas, cds_lr, cds_minlr, cds_wd,
cds_warm, cds_msl, cds_lora_r, cds_lora_alpha, cds_lora_dropout, cds_precision, cds_workers, cds_quant,
cds_mgn, cds_log_steps, cds_eval_steps, cds_save_steps
],
outputs=[cds_status],
)
sm_generate.click(
lambda mn, dn, msl, bs, gas, lr, sst, est, lst, fbe, ifld, tfld, ss, seed, tt: str(
generate_smollm3_custom_config_file(
model_name=mn,
dataset_name=(dn or None),
max_seq_length=int(msl or 4096),
batch_size=int(bs or 2),
gradient_accumulation_steps=int(gas or 8),
learning_rate=float(lr or 5e-6),
save_steps=int(sst or 500),
eval_steps=int(est or 100),
logging_steps=int(lst or 10),
filter_bad_entries=bool(fbe),
input_field=ifld,
target_field=tfld,
sample_size=(int(ss) if ss is not None else None),
sample_seed=int(seed or 42),
trainer_type=tt,
)
),
inputs=[
sm_model, sm_dataset, sm_msl, sm_bs, sm_gas, sm_lr, sm_save, sm_eval, sm_log,
sm_filter, sm_in, sm_out, sm_sample, sm_seed, sm_trainer,
],
outputs=[sm_status],
)
start_btn.click(
start_pipeline,
inputs=[
model_family,
config_choice,
trainer_type,
monitoring_mode,
experiment_name,
repo_short,
author_name,
model_description,
trackio_space_name,
deploy_trackio_space,
create_dataset_repo,
push_to_hub,
switch_to_read_after,
scheduler_override,
min_lr,
min_lr_rate,
],
outputs=[logs],
)
if __name__ == "__main__":
# Optional: allow setting server parameters via env
server_port = int(os.environ.get("INTERFACE_PORT", "7860"))
server_name = os.environ.get("INTERFACE_HOST", "0.0.0.0")
demo.queue().launch(server_name=server_name, server_port=server_port)
|