File size: 6,127 Bytes
d8dd7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fe83da
 
 
 
 
 
 
 
 
 
d8dd7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fe83da
 
 
 
 
 
 
 
 
 
d8dd7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fe83da
 
 
 
 
 
 
 
 
 
 
d8dd7a1
 
 
5fe83da
 
 
d8dd7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#!/usr/bin/env python3
"""
SmolLM3 Fine-tuning Script for FlexAI Console
Based on the nanoGPT structure but adapted for SmolLM3 model
"""

import os
import sys
import argparse
import json
import torch
import logging
from pathlib import Path
from typing import Optional, Dict, Any

# Add the current directory to the path for imports
sys.path.append(os.path.dirname(os.path.abspath(__file__)))

from config import get_config
from model import SmolLM3Model
from data import SmolLM3Dataset
from trainer import SmolLM3Trainer

def setup_logging():
    """Setup logging configuration"""
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
        handlers=[
            logging.StreamHandler(sys.stdout),
            logging.FileHandler('training.log')
        ]
    )
    return logging.getLogger(__name__)

def parse_args():
    """Parse command line arguments"""
    parser = argparse.ArgumentParser(description='SmolLM3 Fine-tuning Script')
    
    # Configuration file
    parser.add_argument('config', type=str, help='Path to configuration file')
    
    # Dataset arguments
    parser.add_argument('--dataset_dir', type=str, default='my_dataset',
                       help='Path to dataset directory within /input')
    
    # Checkpoint arguments
    parser.add_argument('--out_dir', type=str, default='/output-checkpoint',
                       help='Output directory for checkpoints')
    parser.add_argument('--init_from', type=str, default='scratch',
                       choices=['scratch', 'resume', 'pretrained'],
                       help='Initialization method')
    
    # Training arguments
    parser.add_argument('--max_iters', type=int, default=None,
                       help='Maximum number of training iterations')
    parser.add_argument('--batch_size', type=int, default=None,
                       help='Batch size for training')
    parser.add_argument('--learning_rate', type=float, default=None,
                       help='Learning rate')
    parser.add_argument('--gradient_accumulation_steps', type=int, default=None,
                       help='Gradient accumulation steps')
    
    # Model arguments
    parser.add_argument('--model_name', type=str, 
                       default='HuggingFaceTB/SmolLM3-3B',
                       help='Model name or path')
    parser.add_argument('--max_seq_length', type=int, default=4096,
                       help='Maximum sequence length')
    
    # Logging and saving
    parser.add_argument('--save_steps', type=int, default=500,
                       help='Save checkpoint every N steps')
    parser.add_argument('--eval_steps', type=int, default=100,
                       help='Evaluate every N steps')
    parser.add_argument('--logging_steps', type=int, default=10,
                       help='Log every N steps')
    
    # Trackio monitoring arguments
    parser.add_argument('--enable_tracking', action='store_true', default=True,
                       help='Enable Trackio experiment tracking')
    parser.add_argument('--trackio_url', type=str, default=None,
                       help='Trackio server URL')
    parser.add_argument('--trackio_token', type=str, default=None,
                       help='Trackio authentication token')
    parser.add_argument('--experiment_name', type=str, default=None,
                       help='Custom experiment name for tracking')
    
    return parser.parse_args()

def main():
    """Main training function"""
    args = parse_args()
    logger = setup_logging()
    
    logger.info("Starting SmolLM3 fine-tuning...")
    logger.info(f"Arguments: {vars(args)}")
    
    # Load configuration
    config = get_config(args.config)
    
    # Override config with command line arguments
    if args.max_iters is not None:
        config.max_iters = args.max_iters
    if args.batch_size is not None:
        config.batch_size = args.batch_size
    if args.learning_rate is not None:
        config.learning_rate = args.learning_rate
    if args.gradient_accumulation_steps is not None:
        config.gradient_accumulation_steps = args.gradient_accumulation_steps
    
    # Override Trackio configuration
    if args.enable_tracking is not None:
        config.enable_tracking = args.enable_tracking
    if args.trackio_url is not None:
        config.trackio_url = args.trackio_url
    if args.trackio_token is not None:
        config.trackio_token = args.trackio_token
    if args.experiment_name is not None:
        config.experiment_name = args.experiment_name
    
    # Setup paths
    output_path = args.out_dir
    
    # Ensure output directory exists
    os.makedirs(output_path, exist_ok=True)
    
    logger.info(f"Output path: {output_path}")
    
    # Initialize model
    model = SmolLM3Model(
        model_name=args.model_name,
        max_seq_length=args.max_seq_length,
        config=config
    )
    
    # Determine dataset path
    if hasattr(config, 'dataset_name') and config.dataset_name:
        # Use Hugging Face dataset
        dataset_path = config.dataset_name
        logger.info(f"Using Hugging Face dataset: {dataset_path}")
    else:
        # Use local dataset
        dataset_path = os.path.join('/input', args.dataset_dir)
        logger.info(f"Using local dataset: {dataset_path}")
    
    # Load dataset with filtering options
    dataset = SmolLM3Dataset(
        data_path=dataset_path,
        tokenizer=model.tokenizer,
        max_seq_length=args.max_seq_length,
        filter_bad_entries=getattr(config, 'filter_bad_entries', False),
        bad_entry_field=getattr(config, 'bad_entry_field', 'bad_entry')
    )
    
    # Initialize trainer
    trainer = SmolLM3Trainer(
        model=model,
        dataset=dataset,
        config=config,
        output_dir=output_path,
        init_from=args.init_from
    )
    
    # Start training
    try:
        trainer.train()
        logger.info("Training completed successfully!")
    except Exception as e:
        logger.error(f"Training failed: {e}")
        raise

if __name__ == '__main__':
    main()