Spaces:
Running
Running
File size: 15,523 Bytes
5fe83da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
#!/usr/bin/env python3
"""
Push Trained Model and Results to Hugging Face Hub
Integrates with Trackio monitoring and provides complete model deployment
"""
import os
import json
import argparse
import logging
from pathlib import Path
from typing import Dict, Any, Optional, List
from datetime import datetime
import subprocess
import shutil
try:
from huggingface_hub import HfApi, create_repo, upload_file
from huggingface_hub import snapshot_download, hf_hub_download
HF_AVAILABLE = True
except ImportError:
HF_AVAILABLE = False
print("Warning: huggingface_hub not available. Install with: pip install huggingface_hub")
try:
from monitoring import SmolLM3Monitor
MONITORING_AVAILABLE = True
except ImportError:
MONITORING_AVAILABLE = False
print("Warning: monitoring module not available")
logger = logging.getLogger(__name__)
class HuggingFacePusher:
"""Push trained models and results to Hugging Face Hub"""
def __init__(
self,
model_path: str,
repo_name: str,
token: Optional[str] = None,
private: bool = False,
trackio_url: Optional[str] = None,
experiment_name: Optional[str] = None
):
self.model_path = Path(model_path)
self.repo_name = repo_name
self.token = token or os.getenv('HF_TOKEN')
self.private = private
self.trackio_url = trackio_url
self.experiment_name = experiment_name
# Initialize HF API
if HF_AVAILABLE:
self.api = HfApi(token=self.token)
else:
raise ImportError("huggingface_hub is required. Install with: pip install huggingface_hub")
# Initialize monitoring if available
self.monitor = None
if MONITORING_AVAILABLE and trackio_url:
self.monitor = SmolLM3Monitor(
experiment_name=experiment_name or "model_push",
trackio_url=trackio_url,
enable_tracking=True
)
logger.info(f"Initialized HuggingFacePusher for {repo_name}")
def create_repository(self) -> bool:
"""Create the Hugging Face repository"""
try:
logger.info(f"Creating repository: {self.repo_name}")
# Create repository
create_repo(
repo_id=self.repo_name,
token=self.token,
private=self.private,
exist_ok=True
)
logger.info(f"β
Repository created: https://huggingface.co/{self.repo_name}")
return True
except Exception as e:
logger.error(f"β Failed to create repository: {e}")
return False
def validate_model_path(self) -> bool:
"""Validate that the model path contains required files"""
required_files = [
"config.json",
"pytorch_model.bin",
"tokenizer.json",
"tokenizer_config.json"
]
missing_files = []
for file in required_files:
if not (self.model_path / file).exists():
missing_files.append(file)
if missing_files:
logger.error(f"β Missing required files: {missing_files}")
return False
logger.info("β
Model files validated")
return True
def create_model_card(self, training_config: Dict[str, Any], results: Dict[str, Any]) -> str:
"""Create a comprehensive model card"""
model_card = f"""---
language:
- en
license: mit
tags:
- smollm3
- fine-tuned
- text-generation
- transformers
---
# {self.repo_name.split('/')[-1]}
This is a fine-tuned SmolLM3 model based on the HuggingFaceTB/SmolLM3-3B architecture.
## Model Details
- **Base Model**: HuggingFaceTB/SmolLM3-3B
- **Fine-tuning Method**: Supervised Fine-tuning
- **Training Date**: {datetime.now().strftime('%Y-%m-%d')}
- **Model Size**: {self._get_model_size():.1f} GB
## Training Configuration
```json
{json.dumps(training_config, indent=2)}
```
## Training Results
```json
{json.dumps(results, indent=2)}
```
## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("{self.repo_name}")
tokenizer = AutoTokenizer.from_pretrained("{self.repo_name}")
# Generate text
inputs = tokenizer("Hello, how are you?", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Information
- **Framework**: Transformers
- **Hardware**: {self._get_hardware_info()}
- **Training Time**: {results.get('training_time_hours', 'Unknown')} hours
- **Final Loss**: {results.get('final_loss', 'Unknown')}
- **Final Accuracy**: {results.get('final_accuracy', 'Unknown')}
## Model Performance
- **Training Loss**: {results.get('train_loss', 'Unknown')}
- **Validation Loss**: {results.get('eval_loss', 'Unknown')}
- **Training Steps**: {results.get('total_steps', 'Unknown')}
## Limitations and Biases
This model is fine-tuned for specific tasks and may not generalize well to all use cases. Please evaluate the model's performance on your specific task before deployment.
## License
This model is licensed under the MIT License.
"""
return model_card
def _get_model_size(self) -> float:
"""Get model size in GB"""
try:
total_size = 0
for file in self.model_path.rglob("*"):
if file.is_file():
total_size += file.stat().st_size
return total_size / (1024**3) # Convert to GB
except:
return 0.0
def _get_hardware_info(self) -> str:
"""Get hardware information"""
try:
import torch
if torch.cuda.is_available():
gpu_name = torch.cuda.get_device_name(0)
return f"GPU: {gpu_name}"
else:
return "CPU"
except:
return "Unknown"
def upload_model_files(self) -> bool:
"""Upload model files to Hugging Face Hub"""
try:
logger.info("Uploading model files...")
# Upload all files in the model directory
for file_path in self.model_path.rglob("*"):
if file_path.is_file():
relative_path = file_path.relative_to(self.model_path)
remote_path = str(relative_path)
logger.info(f"Uploading {relative_path}")
upload_file(
path_or_fileobj=str(file_path),
path_in_repo=remote_path,
repo_id=self.repo_name,
token=self.token
)
logger.info("β
Model files uploaded successfully")
return True
except Exception as e:
logger.error(f"β Failed to upload model files: {e}")
return False
def upload_training_results(self, results_path: str) -> bool:
"""Upload training results and logs"""
try:
logger.info("Uploading training results...")
results_files = [
"train_results.json",
"eval_results.json",
"training_config.json",
"training.log"
]
for file_name in results_files:
file_path = Path(results_path) / file_name
if file_path.exists():
logger.info(f"Uploading {file_name}")
upload_file(
path_or_fileobj=str(file_path),
path_in_repo=f"training_results/{file_name}",
repo_id=self.repo_name,
token=self.token
)
logger.info("β
Training results uploaded successfully")
return True
except Exception as e:
logger.error(f"β Failed to upload training results: {e}")
return False
def create_readme(self, training_config: Dict[str, Any], results: Dict[str, Any]) -> bool:
"""Create and upload README.md"""
try:
logger.info("Creating README.md...")
readme_content = f"""# {self.repo_name.split('/')[-1]}
A fine-tuned SmolLM3 model for text generation tasks.
## Quick Start
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("{self.repo_name}")
tokenizer = AutoTokenizer.from_pretrained("{self.repo_name}")
# Generate text
text = "Hello, how are you?"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Model Information
- **Base Model**: HuggingFaceTB/SmolLM3-3B
- **Fine-tuning Date**: {datetime.now().strftime('%Y-%m-%d')}
- **Model Size**: {self._get_model_size():.1f} GB
- **Training Steps**: {results.get('total_steps', 'Unknown')}
- **Final Loss**: {results.get('final_loss', 'Unknown')}
## Training Configuration
```json
{json.dumps(training_config, indent=2)}
```
## Performance Metrics
```json
{json.dumps(results, indent=2)}
```
## Files
- `pytorch_model.bin`: Model weights
- `config.json`: Model configuration
- `tokenizer.json`: Tokenizer configuration
- `training_results/`: Training logs and results
## License
MIT License
"""
# Write README to temporary file
readme_path = Path("temp_readme.md")
with open(readme_path, "w") as f:
f.write(readme_content)
# Upload README
upload_file(
path_or_fileobj=str(readme_path),
path_in_repo="README.md",
repo_id=self.repo_name,
token=self.token
)
# Clean up
readme_path.unlink()
logger.info("β
README.md uploaded successfully")
return True
except Exception as e:
logger.error(f"β Failed to create README: {e}")
return False
def log_to_trackio(self, action: str, details: Dict[str, Any]):
"""Log push action to Trackio"""
if self.monitor:
try:
self.monitor.log_metrics({
"push_action": action,
"repo_name": self.repo_name,
"model_size_gb": self._get_model_size(),
**details
})
logger.info(f"β
Logged {action} to Trackio")
except Exception as e:
logger.error(f"β Failed to log to Trackio: {e}")
def push_model(self, training_config: Optional[Dict[str, Any]] = None,
results: Optional[Dict[str, Any]] = None) -> bool:
"""Complete model push process"""
logger.info(f"π Starting model push to {self.repo_name}")
# Validate model path
if not self.validate_model_path():
return False
# Create repository
if not self.create_repository():
return False
# Load training config and results if not provided
if training_config is None:
training_config = self._load_training_config()
if results is None:
results = self._load_training_results()
# Create and upload model card
model_card = self.create_model_card(training_config, results)
model_card_path = Path("temp_model_card.md")
with open(model_card_path, "w") as f:
f.write(model_card)
try:
upload_file(
path_or_fileobj=str(model_card_path),
path_in_repo="README.md",
repo_id=self.repo_name,
token=self.token
)
finally:
model_card_path.unlink()
# Upload model files
if not self.upload_model_files():
return False
# Upload training results
if results:
self.upload_training_results(str(self.model_path))
# Log to Trackio
self.log_to_trackio("model_push", {
"model_path": str(self.model_path),
"repo_name": self.repo_name,
"private": self.private,
"training_config": training_config,
"results": results
})
logger.info(f"π Model successfully pushed to: https://huggingface.co/{self.repo_name}")
return True
def _load_training_config(self) -> Dict[str, Any]:
"""Load training configuration"""
config_path = self.model_path / "training_config.json"
if config_path.exists():
with open(config_path, "r") as f:
return json.load(f)
return {"model_name": "HuggingFaceTB/SmolLM3-3B"}
def _load_training_results(self) -> Dict[str, Any]:
"""Load training results"""
results_path = self.model_path / "train_results.json"
if results_path.exists():
with open(results_path, "r") as f:
return json.load(f)
return {"final_loss": "Unknown", "total_steps": "Unknown"}
def parse_args():
"""Parse command line arguments"""
parser = argparse.ArgumentParser(description='Push trained model to Hugging Face Hub')
# Required arguments
parser.add_argument('model_path', type=str, help='Path to trained model directory')
parser.add_argument('repo_name', type=str, help='Hugging Face repository name (username/repo-name)')
# Optional arguments
parser.add_argument('--token', type=str, default=None, help='Hugging Face token')
parser.add_argument('--private', action='store_true', help='Make repository private')
parser.add_argument('--trackio-url', type=str, default=None, help='Trackio Space URL for logging')
parser.add_argument('--experiment-name', type=str, default=None, help='Experiment name for Trackio')
return parser.parse_args()
def main():
"""Main function"""
args = parse_args()
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger.info("Starting model push to Hugging Face Hub")
# Initialize pusher
try:
pusher = HuggingFacePusher(
model_path=args.model_path,
repo_name=args.repo_name,
token=args.token,
private=args.private,
trackio_url=args.trackio_url,
experiment_name=args.experiment_name
)
# Push model
success = pusher.push_model()
if success:
logger.info("β
Model push completed successfully!")
logger.info(f"π View your model at: https://huggingface.co/{args.repo_name}")
else:
logger.error("β Model push failed!")
return 1
except Exception as e:
logger.error(f"β Error during model push: {e}")
return 1
return 0
if __name__ == "__main__":
exit(main()) |