File size: 15,523 Bytes
5fe83da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
#!/usr/bin/env python3
"""
Push Trained Model and Results to Hugging Face Hub
Integrates with Trackio monitoring and provides complete model deployment
"""

import os
import json
import argparse
import logging
from pathlib import Path
from typing import Dict, Any, Optional, List
from datetime import datetime
import subprocess
import shutil

try:
    from huggingface_hub import HfApi, create_repo, upload_file
    from huggingface_hub import snapshot_download, hf_hub_download
    HF_AVAILABLE = True
except ImportError:
    HF_AVAILABLE = False
    print("Warning: huggingface_hub not available. Install with: pip install huggingface_hub")

try:
    from monitoring import SmolLM3Monitor
    MONITORING_AVAILABLE = True
except ImportError:
    MONITORING_AVAILABLE = False
    print("Warning: monitoring module not available")

logger = logging.getLogger(__name__)

class HuggingFacePusher:
    """Push trained models and results to Hugging Face Hub"""
    
    def __init__(
        self,
        model_path: str,
        repo_name: str,
        token: Optional[str] = None,
        private: bool = False,
        trackio_url: Optional[str] = None,
        experiment_name: Optional[str] = None
    ):
        self.model_path = Path(model_path)
        self.repo_name = repo_name
        self.token = token or os.getenv('HF_TOKEN')
        self.private = private
        self.trackio_url = trackio_url
        self.experiment_name = experiment_name
        
        # Initialize HF API
        if HF_AVAILABLE:
            self.api = HfApi(token=self.token)
        else:
            raise ImportError("huggingface_hub is required. Install with: pip install huggingface_hub")
        
        # Initialize monitoring if available
        self.monitor = None
        if MONITORING_AVAILABLE and trackio_url:
            self.monitor = SmolLM3Monitor(
                experiment_name=experiment_name or "model_push",
                trackio_url=trackio_url,
                enable_tracking=True
            )
        
        logger.info(f"Initialized HuggingFacePusher for {repo_name}")
    
    def create_repository(self) -> bool:
        """Create the Hugging Face repository"""
        try:
            logger.info(f"Creating repository: {self.repo_name}")
            
            # Create repository
            create_repo(
                repo_id=self.repo_name,
                token=self.token,
                private=self.private,
                exist_ok=True
            )
            
            logger.info(f"βœ… Repository created: https://huggingface.co/{self.repo_name}")
            return True
            
        except Exception as e:
            logger.error(f"❌ Failed to create repository: {e}")
            return False
    
    def validate_model_path(self) -> bool:
        """Validate that the model path contains required files"""
        required_files = [
            "config.json",
            "pytorch_model.bin",
            "tokenizer.json",
            "tokenizer_config.json"
        ]
        
        missing_files = []
        for file in required_files:
            if not (self.model_path / file).exists():
                missing_files.append(file)
        
        if missing_files:
            logger.error(f"❌ Missing required files: {missing_files}")
            return False
        
        logger.info("βœ… Model files validated")
        return True
    
    def create_model_card(self, training_config: Dict[str, Any], results: Dict[str, Any]) -> str:
        """Create a comprehensive model card"""
        model_card = f"""---
language:
- en
license: mit
tags:
- smollm3
- fine-tuned
- text-generation
- transformers
---

# {self.repo_name.split('/')[-1]}

This is a fine-tuned SmolLM3 model based on the HuggingFaceTB/SmolLM3-3B architecture.

## Model Details

- **Base Model**: HuggingFaceTB/SmolLM3-3B
- **Fine-tuning Method**: Supervised Fine-tuning
- **Training Date**: {datetime.now().strftime('%Y-%m-%d')}
- **Model Size**: {self._get_model_size():.1f} GB

## Training Configuration

```json
{json.dumps(training_config, indent=2)}
```

## Training Results

```json
{json.dumps(results, indent=2)}
```

## Usage

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("{self.repo_name}")
tokenizer = AutoTokenizer.from_pretrained("{self.repo_name}")

# Generate text
inputs = tokenizer("Hello, how are you?", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

## Training Information

- **Framework**: Transformers
- **Hardware**: {self._get_hardware_info()}
- **Training Time**: {results.get('training_time_hours', 'Unknown')} hours
- **Final Loss**: {results.get('final_loss', 'Unknown')}
- **Final Accuracy**: {results.get('final_accuracy', 'Unknown')}

## Model Performance

- **Training Loss**: {results.get('train_loss', 'Unknown')}
- **Validation Loss**: {results.get('eval_loss', 'Unknown')}
- **Training Steps**: {results.get('total_steps', 'Unknown')}

## Limitations and Biases

This model is fine-tuned for specific tasks and may not generalize well to all use cases. Please evaluate the model's performance on your specific task before deployment.

## License

This model is licensed under the MIT License.
"""
        return model_card
    
    def _get_model_size(self) -> float:
        """Get model size in GB"""
        try:
            total_size = 0
            for file in self.model_path.rglob("*"):
                if file.is_file():
                    total_size += file.stat().st_size
            return total_size / (1024**3)  # Convert to GB
        except:
            return 0.0
    
    def _get_hardware_info(self) -> str:
        """Get hardware information"""
        try:
            import torch
            if torch.cuda.is_available():
                gpu_name = torch.cuda.get_device_name(0)
                return f"GPU: {gpu_name}"
            else:
                return "CPU"
        except:
            return "Unknown"
    
    def upload_model_files(self) -> bool:
        """Upload model files to Hugging Face Hub"""
        try:
            logger.info("Uploading model files...")
            
            # Upload all files in the model directory
            for file_path in self.model_path.rglob("*"):
                if file_path.is_file():
                    relative_path = file_path.relative_to(self.model_path)
                    remote_path = str(relative_path)
                    
                    logger.info(f"Uploading {relative_path}")
                    upload_file(
                        path_or_fileobj=str(file_path),
                        path_in_repo=remote_path,
                        repo_id=self.repo_name,
                        token=self.token
                    )
            
            logger.info("βœ… Model files uploaded successfully")
            return True
            
        except Exception as e:
            logger.error(f"❌ Failed to upload model files: {e}")
            return False
    
    def upload_training_results(self, results_path: str) -> bool:
        """Upload training results and logs"""
        try:
            logger.info("Uploading training results...")
            
            results_files = [
                "train_results.json",
                "eval_results.json",
                "training_config.json",
                "training.log"
            ]
            
            for file_name in results_files:
                file_path = Path(results_path) / file_name
                if file_path.exists():
                    logger.info(f"Uploading {file_name}")
                    upload_file(
                        path_or_fileobj=str(file_path),
                        path_in_repo=f"training_results/{file_name}",
                        repo_id=self.repo_name,
                        token=self.token
                    )
            
            logger.info("βœ… Training results uploaded successfully")
            return True
            
        except Exception as e:
            logger.error(f"❌ Failed to upload training results: {e}")
            return False
    
    def create_readme(self, training_config: Dict[str, Any], results: Dict[str, Any]) -> bool:
        """Create and upload README.md"""
        try:
            logger.info("Creating README.md...")
            
            readme_content = f"""# {self.repo_name.split('/')[-1]}

A fine-tuned SmolLM3 model for text generation tasks.

## Quick Start

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("{self.repo_name}")
tokenizer = AutoTokenizer.from_pretrained("{self.repo_name}")

# Generate text
text = "Hello, how are you?"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

## Model Information

- **Base Model**: HuggingFaceTB/SmolLM3-3B
- **Fine-tuning Date**: {datetime.now().strftime('%Y-%m-%d')}
- **Model Size**: {self._get_model_size():.1f} GB
- **Training Steps**: {results.get('total_steps', 'Unknown')}
- **Final Loss**: {results.get('final_loss', 'Unknown')}

## Training Configuration

```json
{json.dumps(training_config, indent=2)}
```

## Performance Metrics

```json
{json.dumps(results, indent=2)}
```

## Files

- `pytorch_model.bin`: Model weights
- `config.json`: Model configuration
- `tokenizer.json`: Tokenizer configuration
- `training_results/`: Training logs and results

## License

MIT License
"""
            
            # Write README to temporary file
            readme_path = Path("temp_readme.md")
            with open(readme_path, "w") as f:
                f.write(readme_content)
            
            # Upload README
            upload_file(
                path_or_fileobj=str(readme_path),
                path_in_repo="README.md",
                repo_id=self.repo_name,
                token=self.token
            )
            
            # Clean up
            readme_path.unlink()
            
            logger.info("βœ… README.md uploaded successfully")
            return True
            
        except Exception as e:
            logger.error(f"❌ Failed to create README: {e}")
            return False
    
    def log_to_trackio(self, action: str, details: Dict[str, Any]):
        """Log push action to Trackio"""
        if self.monitor:
            try:
                self.monitor.log_metrics({
                    "push_action": action,
                    "repo_name": self.repo_name,
                    "model_size_gb": self._get_model_size(),
                    **details
                })
                logger.info(f"βœ… Logged {action} to Trackio")
            except Exception as e:
                logger.error(f"❌ Failed to log to Trackio: {e}")
    
    def push_model(self, training_config: Optional[Dict[str, Any]] = None, 
                   results: Optional[Dict[str, Any]] = None) -> bool:
        """Complete model push process"""
        logger.info(f"πŸš€ Starting model push to {self.repo_name}")
        
        # Validate model path
        if not self.validate_model_path():
            return False
        
        # Create repository
        if not self.create_repository():
            return False
        
        # Load training config and results if not provided
        if training_config is None:
            training_config = self._load_training_config()
        
        if results is None:
            results = self._load_training_results()
        
        # Create and upload model card
        model_card = self.create_model_card(training_config, results)
        model_card_path = Path("temp_model_card.md")
        with open(model_card_path, "w") as f:
            f.write(model_card)
        
        try:
            upload_file(
                path_or_fileobj=str(model_card_path),
                path_in_repo="README.md",
                repo_id=self.repo_name,
                token=self.token
            )
        finally:
            model_card_path.unlink()
        
        # Upload model files
        if not self.upload_model_files():
            return False
        
        # Upload training results
        if results:
            self.upload_training_results(str(self.model_path))
        
        # Log to Trackio
        self.log_to_trackio("model_push", {
            "model_path": str(self.model_path),
            "repo_name": self.repo_name,
            "private": self.private,
            "training_config": training_config,
            "results": results
        })
        
        logger.info(f"πŸŽ‰ Model successfully pushed to: https://huggingface.co/{self.repo_name}")
        return True
    
    def _load_training_config(self) -> Dict[str, Any]:
        """Load training configuration"""
        config_path = self.model_path / "training_config.json"
        if config_path.exists():
            with open(config_path, "r") as f:
                return json.load(f)
        return {"model_name": "HuggingFaceTB/SmolLM3-3B"}
    
    def _load_training_results(self) -> Dict[str, Any]:
        """Load training results"""
        results_path = self.model_path / "train_results.json"
        if results_path.exists():
            with open(results_path, "r") as f:
                return json.load(f)
        return {"final_loss": "Unknown", "total_steps": "Unknown"}

def parse_args():
    """Parse command line arguments"""
    parser = argparse.ArgumentParser(description='Push trained model to Hugging Face Hub')
    
    # Required arguments
    parser.add_argument('model_path', type=str, help='Path to trained model directory')
    parser.add_argument('repo_name', type=str, help='Hugging Face repository name (username/repo-name)')
    
    # Optional arguments
    parser.add_argument('--token', type=str, default=None, help='Hugging Face token')
    parser.add_argument('--private', action='store_true', help='Make repository private')
    parser.add_argument('--trackio-url', type=str, default=None, help='Trackio Space URL for logging')
    parser.add_argument('--experiment-name', type=str, default=None, help='Experiment name for Trackio')
    
    return parser.parse_args()

def main():
    """Main function"""
    args = parse_args()
    
    # Setup logging
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
    )
    
    logger.info("Starting model push to Hugging Face Hub")
    
    # Initialize pusher
    try:
        pusher = HuggingFacePusher(
            model_path=args.model_path,
            repo_name=args.repo_name,
            token=args.token,
            private=args.private,
            trackio_url=args.trackio_url,
            experiment_name=args.experiment_name
        )
        
        # Push model
        success = pusher.push_model()
        
        if success:
            logger.info("βœ… Model push completed successfully!")
            logger.info(f"🌐 View your model at: https://huggingface.co/{args.repo_name}")
        else:
            logger.error("❌ Model push failed!")
            return 1
            
    except Exception as e:
        logger.error(f"❌ Error during model push: {e}")
        return 1
    
    return 0

if __name__ == "__main__":
    exit(main())