Spaces:
Running
Running
File size: 9,980 Bytes
5fe83da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
# Push to Hugging Face Hub Guide
This guide explains how to use the `push_to_huggingface.py` script to upload your trained SmolLM3 models and results to Hugging Face Hub.
## Features
- β
**Automatic Repository Creation** - Creates HF repositories automatically
- β
**Model Validation** - Validates required model files before upload
- β
**Comprehensive Model Cards** - Generates detailed model documentation
- β
**Training Results Upload** - Uploads logs, configs, and results
- β
**Trackio Integration** - Logs push actions to your monitoring system
- β
**Private/Public Repositories** - Support for both private and public models
## Prerequisites
### 1. Install Dependencies
```bash
pip install huggingface_hub
```
### 2. Set Up Hugging Face Token
```bash
# Option 1: Environment variable
export HF_TOKEN="your_huggingface_token_here"
# Option 2: Use --token argument
python push_to_huggingface.py model_path repo_name --token "your_token"
```
### 3. Get Your Hugging Face Token
1. Go to https://huggingface.co/settings/tokens
2. Click "New token"
3. Give it a name (e.g., "model-upload")
4. Select "Write" permissions
5. Copy the token
## Basic Usage
### Simple Model Push
```bash
python push_to_huggingface.py /path/to/model username/model-name
```
### Push with Custom Token
```bash
python push_to_huggingface.py /path/to/model username/model-name \
--token "hf_your_token_here"
```
### Push Private Model
```bash
python push_to_huggingface.py /path/to/model username/model-name \
--private
```
### Push with Trackio Integration
```bash
python push_to_huggingface.py /path/to/model username/model-name \
--trackio-url "https://your-space.hf.space" \
--experiment-name "my_experiment"
```
## Complete Workflow Example
### 1. Train Your Model
```bash
python train.py config/train_smollm3.py \
--dataset_dir my_dataset \
--enable_tracking \
--trackio_url "https://your-space.hf.space" \
--experiment_name "smollm3_finetune_v1"
```
### 2. Push to Hugging Face Hub
```bash
python push_to_huggingface.py /output-checkpoint username/smollm3-finetuned \
--trackio-url "https://your-space.hf.space" \
--experiment-name "smollm3_finetune_v1"
```
### 3. Use Your Model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load your uploaded model
model = AutoModelForCausalLM.from_pretrained("username/smollm3-finetuned")
tokenizer = AutoTokenizer.from_pretrained("username/smollm3-finetuned")
# Generate text
inputs = tokenizer("Hello, how are you?", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Repository Structure
After pushing, your repository will contain:
```
username/model-name/
βββ README.md # Auto-generated model card
βββ config.json # Model configuration
βββ pytorch_model.bin # Model weights
βββ tokenizer.json # Tokenizer configuration
βββ tokenizer_config.json # Tokenizer settings
βββ special_tokens_map.json # Special tokens
βββ training_results/ # Training artifacts
β βββ train_results.json
β βββ eval_results.json
β βββ training_config.json
β βββ training.log
βββ .gitattributes # Git attributes
```
## Model Card Features
The script automatically generates comprehensive model cards including:
- **Model Details**: Base model, fine-tuning method, size
- **Training Configuration**: All training parameters
- **Training Results**: Loss, accuracy, steps, time
- **Usage Examples**: Code snippets for loading and using
- **Performance Metrics**: Training and validation metrics
- **Hardware Information**: GPU/CPU used for training
## Advanced Usage
### Custom Repository Names
```bash
# Public repository
python push_to_huggingface.py /model myusername/smollm3-chatbot
# Private repository
python push_to_huggingface.py /model myusername/smollm3-private --private
```
### Integration with Training Pipeline
```bash
#!/bin/bash
# Complete training and push workflow
# 1. Train the model
python train.py config/train_smollm3.py \
--dataset_dir my_dataset \
--enable_tracking \
--trackio_url "https://your-space.hf.space" \
--experiment_name "smollm3_v1"
# 2. Push to Hugging Face Hub
python push_to_huggingface.py /output-checkpoint myusername/smollm3-v1 \
--trackio-url "https://your-space.hf.space" \
--experiment-name "smollm3_v1"
# 3. Test the model
python -c "
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained('myusername/smollm3-v1')
tokenizer = AutoTokenizer.from_pretrained('myusername/smollm3-v1')
print('Model loaded successfully!')
"
```
### Batch Processing Multiple Models
```bash
#!/bin/bash
# Push multiple models
models=(
"smollm3-baseline"
"smollm3-high-lr"
"smollm3-dpo"
)
for model in "${models[@]}"; do
echo "Pushing $model..."
python push_to_huggingface.py "/models/$model" "username/$model"
done
```
## Error Handling
### Common Issues and Solutions
#### 1. Missing Model Files
**Error**: `β Missing required files: ['config.json', 'pytorch_model.bin']`
**Solution**: Ensure your model directory contains all required files:
- `config.json`
- `pytorch_model.bin`
- `tokenizer.json`
- `tokenizer_config.json`
#### 2. Authentication Issues
**Error**: `β Failed to create repository: 401 Client Error`
**Solution**:
- Check your HF token is valid
- Ensure token has write permissions
- Verify username in repository name matches your account
#### 3. Repository Already Exists
**Error**: `Repository already exists`
**Solution**: The script handles this automatically with `exist_ok=True`, but you can:
- Use a different repository name
- Delete the existing repository first
- Use version numbers: `username/model-v2`
#### 4. Large File Upload Issues
**Error**: `Upload failed for large files`
**Solution**:
- Check your internet connection
- Use Git LFS for large files
- Consider splitting large models
## Trackio Integration
### Logging Push Actions
When using Trackio integration, the script logs:
- **Push Action**: Repository creation and file uploads
- **Model Metadata**: Size, configuration, results
- **Repository Info**: Name, privacy settings, URL
- **Training Results**: Loss, accuracy, steps
### Viewing Push Logs
1. Go to your Trackio Space
2. Navigate to the "View Experiments" tab
3. Find your experiment
4. Check the metrics for push-related actions
## Security Best Practices
### Token Management
```bash
# Use environment variables (recommended)
export HF_TOKEN="your_token_here"
python push_to_huggingface.py model repo
# Don't hardcode tokens in scripts
# β Bad: python push_to_huggingface.py model repo --token "hf_xxx"
```
### Private Models
```bash
# For sensitive models, use private repositories
python push_to_huggingface.py model username/private-model --private
```
### Repository Naming
```bash
# Use descriptive names
python push_to_huggingface.py model username/smollm3-chatbot-v1
# Include version numbers
python push_to_huggingface.py model username/smollm3-v2.0
```
## Performance Optimization
### Large Models
For models > 5GB:
```bash
# Use Git LFS for large files
git lfs install
git lfs track "*.bin"
# Consider splitting models
python push_to_huggingface.py model username/model-large --private
```
### Upload Speed
```bash
# Use stable internet connection
# Consider uploading during off-peak hours
# Use private repositories for faster uploads
```
## Troubleshooting
### Debug Mode
```bash
# Enable debug logging
export LOG_LEVEL=DEBUG
python push_to_huggingface.py model repo
```
### Validate Model Files
```bash
# Check model structure before pushing
ls -la /path/to/model/
# Should contain: config.json, pytorch_model.bin, tokenizer.json, etc.
```
### Test Repository Access
```bash
# Test your HF token
python -c "
from huggingface_hub import HfApi
api = HfApi(token='your_token')
print('Token is valid!')
"
```
## Integration Examples
### With CI/CD Pipeline
```yaml
# .github/workflows/train-and-push.yml
name: Train and Push Model
on:
push:
branches: [main]
jobs:
train-and-push:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Train Model
run: |
python train.py config/train_smollm3.py
- name: Push to HF Hub
run: |
python push_to_huggingface.py /output username/model-${{ github.run_number }}
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
```
### With Docker
```dockerfile
# Dockerfile
FROM python:3.9
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY . .
CMD ["python", "push_to_huggingface.py", "/model", "username/model"]
```
## Support and Resources
### Documentation
- [Hugging Face Hub Documentation](https://huggingface.co/docs/hub/index)
- [Transformers Documentation](https://huggingface.co/docs/transformers/index)
- [Model Cards Guide](https://huggingface.co/docs/hub/model-cards)
### Community
- [Hugging Face Forums](https://discuss.huggingface.co/)
- [GitHub Issues](https://github.com/huggingface/huggingface_hub/issues)
### Examples
- [Model Repository Examples](https://huggingface.co/models?search=smollm3)
- [Fine-tuned Models](https://huggingface.co/models?pipeline_tag=text-generation&sort=downloads)
## Conclusion
The `push_to_huggingface.py` script provides a complete solution for:
- β
**Easy Model Deployment** - One command to push models
- β
**Professional Documentation** - Auto-generated model cards
- β
**Training Artifacts** - Complete experiment tracking
- β
**Integration Ready** - Works with CI/CD and monitoring
- β
**Security Focused** - Proper token and privacy management
Start sharing your fine-tuned SmolLM3 models with the community! |