Spaces:
Running
Running
File size: 25,803 Bytes
5fe83da ebe598e 5fe83da e99b183 5fe83da ebe598e 5fe83da e99b183 5fe83da c61ed6b 5fe83da ebe598e 5fe83da ebe598e 5fe83da d9f7e1b 5fe83da ebe598e c61ed6b 5743cc8 5fe83da 5743cc8 ebe598e 96fd5b3 ebe598e f251d3d ebe598e 5fe83da e99b183 5fe83da f251d3d 5fe83da f251d3d 5fe83da f251d3d 5fe83da c61ed6b f251d3d c61ed6b 21d66ae c61ed6b 5fe83da c61ed6b 5fe83da f251d3d ebe598e c61ed6b ebe598e c61ed6b ebe598e c61ed6b ebe598e c61ed6b ebe598e c61ed6b ebe598e c61ed6b ebe598e c61ed6b ebe598e d9f7e1b 5fe83da d9f7e1b 5fe83da ebe598e 21d66ae ebe598e 5fe83da 96fd5b3 5fe83da d9f7e1b 5fe83da 40fd629 d9f7e1b 5fe83da 21d66ae ebe598e 21d66ae 5fe83da ebe598e 5fe83da 96fd5b3 5fe83da e99b183 ebe598e 5fe83da ebe598e 5fe83da 96fd5b3 5fe83da 96fd5b3 5fe83da 96fd5b3 5fe83da 96fd5b3 5fe83da 96fd5b3 5fe83da d9f7e1b 5fe83da 96fd5b3 5fe83da ebe598e 96fd5b3 e99b183 ebe598e 5fe83da 96fd5b3 5fe83da d9f7e1b 5fe83da d9f7e1b 40fd629 5fe83da d9f7e1b 5fe83da d9f7e1b 40fd629 34b58cd 93eabe8 96fd5b3 34b58cd 5fe83da 40fd629 93eabe8 40fd629 93eabe8 96fd5b3 5fe83da 93eabe8 d9f7e1b 96fd5b3 d9f7e1b 93eabe8 96fd5b3 5fe83da 93eabe8 d9f7e1b 93eabe8 96fd5b3 34b58cd 93eabe8 96fd5b3 34b58cd 93eabe8 96fd5b3 5fe83da d9f7e1b 5fe83da 96fd5b3 5fe83da e99b183 5fe83da e99b183 96fd5b3 5fe83da 96fd5b3 ebe598e 5fe83da e99b183 5fe83da e99b183 ebe598e 5fe83da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
"""
Trackio Monitoring Integration for SmolLM3 Fine-tuning
Provides comprehensive experiment tracking and monitoring capabilities with HF Datasets support
"""
import os
import json
import logging
from typing import Dict, Any, Optional, List
from datetime import datetime
import torch
from pathlib import Path
# Import the real API client
try:
from scripts.trackio_tonic.trackio_api_client import TrackioAPIClient
TRACKIO_AVAILABLE = True
except ImportError:
TRACKIO_AVAILABLE = False
print("Warning: Trackio API client not available. Install with: pip install requests")
# Check if there's a conflicting trackio package installed
try:
import trackio
print(f"Warning: Found installed trackio package at {trackio.__file__}")
print("This may conflict with our custom TrackioAPIClient. Using custom implementation only.")
except ImportError:
pass # No conflicting package found
logger = logging.getLogger(__name__)
class SmolLM3Monitor:
"""Monitoring and tracking for SmolLM3 fine-tuning experiments with HF Datasets support"""
def __init__(
self,
experiment_name: str,
trackio_url: Optional[str] = None,
trackio_token: Optional[str] = None,
enable_tracking: bool = True,
log_artifacts: bool = True,
log_metrics: bool = True,
log_config: bool = True,
hf_token: Optional[str] = None,
dataset_repo: Optional[str] = None
):
self.experiment_name = experiment_name
self.enable_tracking = enable_tracking and TRACKIO_AVAILABLE
self.log_artifacts = log_artifacts
self.log_metrics_enabled = log_metrics # Rename to avoid conflict
self.log_config_enabled = log_config # Rename to avoid conflict
# HF Datasets configuration
self.hf_token = hf_token or os.environ.get('HF_TOKEN')
self.dataset_repo = dataset_repo or os.environ.get('TRACKIO_DATASET_REPO', 'tonic/trackio-experiments')
# Ensure dataset repository is properly set
if not self.dataset_repo or self.dataset_repo.strip() == '':
logger.warning("β οΈ Dataset repository not set, using default")
self.dataset_repo = 'tonic/trackio-experiments'
# Initialize experiment metadata first
self.experiment_id = None
self.start_time = datetime.now()
self.metrics_history = []
self.artifacts = []
# Initialize Trackio API client
self.trackio_client = None
if self.enable_tracking:
self._setup_trackio(trackio_url, trackio_token)
# Initialize HF Datasets client
self.hf_dataset_client = None
if self.hf_token:
self._setup_hf_datasets()
logger.info("Initialized monitoring for experiment: %s", experiment_name)
logger.info("Dataset repository: %s", self.dataset_repo)
# Create experiment in Trackio if tracking is enabled
if self.enable_tracking and self.trackio_client:
self._create_experiment()
def _setup_hf_datasets(self):
"""Setup HF Datasets client for persistent storage"""
try:
from datasets import Dataset
from huggingface_hub import HfApi
self.hf_dataset_client = {
'Dataset': Dataset,
'HfApi': HfApi,
'api': HfApi(token=self.hf_token)
}
logger.info("β
HF Datasets client initialized for %s", self.dataset_repo)
except ImportError:
logger.warning("β οΈ datasets or huggingface-hub not available. Install with: pip install datasets huggingface-hub")
self.hf_dataset_client = None
except Exception as e:
logger.error("Failed to initialize HF Datasets client: %s", e)
self.hf_dataset_client = None
def _setup_trackio(self, trackio_url: Optional[str], trackio_token: Optional[str]):
"""Setup Trackio API client"""
try:
# Get Trackio configuration from environment or parameters
space_id = trackio_url or os.getenv('TRACKIO_SPACE_ID')
if not space_id:
# Use the deployed Trackio Space ID
space_id = "Tonic/trackio-monitoring-20250727"
logger.info(f"Using default Trackio Space ID: {space_id}")
# Get HF token for Space resolution
hf_token = self.hf_token or trackio_token or os.getenv('HF_TOKEN')
self.trackio_client = TrackioAPIClient(space_id, hf_token)
# Test connection to Trackio Space
try:
# Test connection first
connection_test = self.trackio_client.test_connection()
if connection_test.get('error'):
logger.warning(f"Trackio Space not accessible: {connection_test['error']}")
logger.info("Continuing with HF Datasets only")
self.enable_tracking = False
return
logger.info("β
Trackio Space connection successful")
except Exception as e:
logger.warning(f"Trackio Space not accessible: {e}")
logger.info("Continuing with HF Datasets only")
self.enable_tracking = False
return
except Exception as e:
logger.error(f"Failed to setup Trackio: {e}")
self.enable_tracking = False
def _create_experiment(self):
"""Create experiment in Trackio and set experiment_id"""
try:
if not self.trackio_client:
logger.warning("Trackio client not available, skipping experiment creation")
return
# Create experiment with timestamp to ensure uniqueness
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
experiment_name = f"{self.experiment_name}_{timestamp}"
result = self.trackio_client.create_experiment(
name=experiment_name,
description=f"SmolLM3 fine-tuning experiment: {self.experiment_name}"
)
if result.get('success'):
# Extract experiment ID from the response
response_data = result.get('data', '')
if 'ID: ' in response_data:
# Extract ID from response like "β
Experiment created successfully!\nID: exp_20250727_151252\nName: test_experiment_api_fix\nStatus: running"
lines = response_data.split('\n')
for line in lines:
if line.startswith('ID: '):
self.experiment_id = line.replace('ID: ', '').strip()
break
if not self.experiment_id:
# Fallback: generate experiment ID
self.experiment_id = f"exp_{timestamp}"
logger.info(f"β
Experiment created successfully: {self.experiment_id}")
else:
logger.warning(f"Failed to create experiment: {result}")
# Fallback: generate experiment ID
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
self.experiment_id = f"exp_{timestamp}"
except Exception as e:
logger.error(f"Failed to create experiment: {e}")
# Fallback: generate experiment ID
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
self.experiment_id = f"exp_{timestamp}"
def _save_to_hf_dataset(self, experiment_data: Dict[str, Any]):
"""Save experiment data to HF Dataset"""
if not self.hf_dataset_client or not self.dataset_repo:
logger.warning("β οΈ HF Datasets not available or dataset repo not set")
return False
try:
# Ensure dataset repository is not empty
if not self.dataset_repo or self.dataset_repo.strip() == '':
logger.error("β Dataset repository is empty")
return False
# Validate dataset repository format
if '/' not in self.dataset_repo:
logger.error(f"β Invalid dataset repository format: {self.dataset_repo}")
return False
Dataset = self.hf_dataset_client['Dataset']
api = self.hf_dataset_client['api']
# Create dataset from experiment data with correct structure
# Match the structure used in setup_hf_dataset.py
dataset_data = [{
'experiment_id': self.experiment_id or f"exp_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
'name': self.experiment_name,
'description': "SmolLM3 fine-tuning experiment",
'created_at': self.start_time.isoformat(),
'status': 'running',
'metrics': json.dumps(self.metrics_history),
'parameters': json.dumps(experiment_data),
'artifacts': json.dumps(self.artifacts),
'logs': json.dumps([]),
'last_updated': datetime.now().isoformat()
}]
# Create dataset from the experiment data
dataset = Dataset.from_list(dataset_data)
# Push to hub
dataset.push_to_hub(
self.dataset_repo,
token=self.hf_token,
private=True
)
logger.info(f"β
Experiment data saved to HF Dataset: {self.dataset_repo}")
return True
except Exception as e:
logger.error(f"Failed to save to HF Dataset: {e}")
return False
def log_configuration(self, config: Dict[str, Any]):
"""Log experiment configuration"""
if not self.enable_tracking or not self.log_config_enabled:
return
try:
# Log configuration as parameters
if self.trackio_client:
try:
result = self.trackio_client.log_parameters(
experiment_id=self.experiment_id,
parameters=config
)
if "success" in result:
logger.info("Configuration logged to Trackio")
else:
logger.warning("Failed to log configuration to Trackio: %s", result)
except Exception as e:
logger.warning("Trackio configuration logging failed: %s", e)
# Save to HF Dataset
self._save_to_hf_dataset(config)
# Also save config locally
config_path = "config_{}_{}.json".format(
self.experiment_name,
self.start_time.strftime('%Y%m%d_%H%M%S')
)
with open(config_path, 'w') as f:
json.dump(config, f, indent=2, default=str)
self.artifacts.append(config_path)
logger.info("Configuration saved to %s", config_path)
except Exception as e:
logger.error("Failed to log configuration: %s", e)
def log_config(self, config: Dict[str, Any]):
"""Alias for log_configuration for backward compatibility"""
return self.log_configuration(config)
def log_metrics(self, metrics: Dict[str, Any], step: Optional[int] = None):
"""
Log training metrics. Supports advanced metrics such as:
- total_tokens, truncated_tokens, padding_tokens
- throughput, step_time, batch_size, seq_len
- token_acc, train/gate_ortho, train/center, etc.
"""
if not self.enable_tracking or not self.log_metrics_enabled:
return
try:
# Add timestamp
metrics['timestamp'] = datetime.now().isoformat()
if step is not None:
metrics['step'] = step
# Log to Trackio (if available)
if self.trackio_client:
try:
result = self.trackio_client.log_metrics(
experiment_id=self.experiment_id,
metrics=metrics,
step=step
)
if "success" in result:
logger.debug("Metrics logged to Trackio")
else:
logger.warning("Failed to log metrics to Trackio: %s", result)
except Exception as e:
logger.warning("Trackio logging failed: %s", e)
# Store locally
self.metrics_history.append(metrics)
# Save to HF Dataset periodically
if len(self.metrics_history) % 10 == 0: # Save every 10 metrics
self._save_to_hf_dataset({'metrics': self.metrics_history})
logger.debug("Metrics logged: %s", metrics)
except Exception as e:
logger.error("Failed to log metrics: %s", e)
def log_model_checkpoint(self, checkpoint_path: str, step: Optional[int] = None):
"""Log model checkpoint"""
if not self.enable_tracking or not self.log_artifacts:
return
try:
# For now, just log the checkpoint path as a parameter
# The actual file upload would need additional API endpoints
checkpoint_info = {
"checkpoint_path": checkpoint_path,
"checkpoint_step": step,
"checkpoint_size": os.path.getsize(checkpoint_path) if os.path.exists(checkpoint_path) else 0
}
if self.trackio_client:
result = self.trackio_client.log_parameters(
experiment_id=self.experiment_id,
parameters=checkpoint_info
)
if "success" in result:
logger.info("Checkpoint logged to Trackio")
else:
logger.error("Failed to log checkpoint to Trackio: %s", result)
self.artifacts.append(checkpoint_path)
logger.info("Checkpoint logged: %s", checkpoint_path)
except Exception as e:
logger.error("Failed to log checkpoint: %s", e)
def log_evaluation_results(self, results: Dict[str, Any], step: Optional[int] = None):
"""Log evaluation results"""
if not self.enable_tracking:
return
try:
# Add evaluation prefix to metrics
eval_metrics = {f"eval_{k}": v for k, v in results.items()}
self.log_metrics(eval_metrics, step)
# Save evaluation results locally
eval_path = "eval_results_step_{}_{}.json".format(
step or "unknown",
self.start_time.strftime('%Y%m%d_%H%M%S')
)
with open(eval_path, 'w') as f:
json.dump(results, f, indent=2, default=str)
self.artifacts.append(eval_path)
logger.info("Evaluation results logged and saved to %s", eval_path)
except Exception as e:
logger.error("Failed to log evaluation results: %s", e)
def log_system_metrics(self, step: Optional[int] = None):
"""Log system metrics (GPU, memory, etc.)"""
if not self.enable_tracking:
return
try:
system_metrics = {}
# GPU metrics
if torch.cuda.is_available():
for i in range(torch.cuda.device_count()):
system_metrics['gpu_{}_memory_allocated'.format(i)] = torch.cuda.memory_allocated(i) / 1024**3 # GB
system_metrics['gpu_{}_memory_reserved'.format(i)] = torch.cuda.memory_reserved(i) / 1024**3 # GB
system_metrics['gpu_{}_utilization'.format(i)] = torch.cuda.utilization(i) if hasattr(torch.cuda, 'utilization') else 0
# CPU and memory metrics (basic)
try:
import psutil
system_metrics['cpu_percent'] = psutil.cpu_percent()
system_metrics['memory_percent'] = psutil.virtual_memory().percent
except ImportError:
logger.warning("psutil not available, skipping CPU/memory metrics")
self.log_metrics(system_metrics, step)
except Exception as e:
logger.error("Failed to log system metrics: %s", e)
def log_training_summary(self, summary: Dict[str, Any]):
"""Log training summary at the end"""
if not self.enable_tracking:
return
try:
# Add experiment duration
end_time = datetime.now()
duration = (end_time - self.start_time).total_seconds()
summary['experiment_duration_seconds'] = duration
summary['experiment_duration_hours'] = duration / 3600
# Log final summary to Trackio
if self.trackio_client:
result = self.trackio_client.log_parameters(
experiment_id=self.experiment_id,
parameters=summary
)
if "success" in result:
logger.info("Training summary logged to Trackio")
else:
logger.error("Failed to log training summary to Trackio: %s", result)
# Save to HF Dataset
self._save_to_hf_dataset(summary)
# Save summary locally
summary_path = "training_summary_{}_{}.json".format(
self.experiment_name,
self.start_time.strftime('%Y%m%d_%H%M%S')
)
with open(summary_path, 'w') as f:
json.dump(summary, f, indent=2, default=str)
self.artifacts.append(summary_path)
logger.info("Training summary logged and saved to %s", summary_path)
except Exception as e:
logger.error("Failed to log training summary: %s", e)
def create_monitoring_callback(self):
"""Create a callback for integration with Hugging Face Trainer"""
from transformers import TrainerCallback
class TrackioCallback(TrainerCallback):
"""
Trainer callback for logging metrics, including advanced metrics:
- total_tokens, truncated_tokens, padding_tokens
- throughput, step_time, batch_size, seq_len
- token_acc, train/gate_ortho, train/center, etc.
"""
def __init__(self, monitor):
super().__init__()
self.monitor = monitor
logger.info("TrackioCallback initialized")
self.last_step_time = None
def on_init_end(self, args, state, control, **kwargs):
"""Called when training initialization is complete"""
try:
logger.info("Training initialization completed")
except Exception as e:
logger.error("Error in on_init_end: %s", e)
def on_log(self, args, state, control, logs=None, **kwargs):
"""Called when logs are created"""
import time
try:
step = getattr(state, 'global_step', None)
# Timing and throughput
now = time.time()
if self.last_step_time is not None:
step_time = now - self.last_step_time
logs['step_time'] = step_time
# Throughput: tokens/sec if total_tokens is available
if hasattr(self, 'last_total_tokens') and self.last_total_tokens is not None:
throughput = (logs.get('total_tokens', 0) / step_time) if step_time > 0 else 0
logs['throughput'] = throughput
self.last_step_time = now
# Token stats from batch (if available in kwargs)
batch = kwargs.get('inputs', None)
if batch is not None:
for key in ['total_tokens', 'padding_tokens', 'truncated_tokens', 'batch_size', 'seq_len']:
if key in batch:
logs[key] = batch[key]
self.last_total_tokens = batch.get('total_tokens', None)
else:
self.last_total_tokens = None
# Token accuracy (if possible)
if 'labels' in logs and 'predictions' in logs:
labels = logs['labels']
preds = logs['predictions']
if hasattr(labels, 'shape') and hasattr(preds, 'shape'):
correct = (preds == labels).sum().item()
total = labels.numel()
logs['token_acc'] = correct / total if total > 0 else 0.0
self.monitor.log_metrics(logs, step)
self.monitor.log_system_metrics(step)
except Exception as e:
logger.error("Error in on_log: %s", e)
def on_save(self, args, state, control, **kwargs):
"""Called when a checkpoint is saved"""
try:
step = getattr(state, 'global_step', None)
if step is not None:
checkpoint_path = os.path.join(args.output_dir, "checkpoint-{}".format(step))
if os.path.exists(checkpoint_path):
self.monitor.log_model_checkpoint(checkpoint_path, step)
except Exception as e:
logger.error("Error in on_save: %s", e)
def on_evaluate(self, args, state, control, metrics=None, **kwargs):
"""Called when evaluation is performed"""
try:
if metrics and isinstance(metrics, dict):
step = getattr(state, 'global_step', None)
self.monitor.log_evaluation_results(metrics, step)
except Exception as e:
logger.error("Error in on_evaluate: %s", e)
def on_train_begin(self, args, state, control, **kwargs):
"""Called when training begins"""
try:
logger.info("Training started")
except Exception as e:
logger.error("Error in on_train_begin: %s", e)
def on_train_end(self, args, state, control, **kwargs):
"""Called when training ends"""
try:
logger.info("Training completed")
if self.monitor:
self.monitor.close()
except Exception as e:
logger.error("Error in on_train_end: %s", e)
callback = TrackioCallback(self)
logger.info("TrackioCallback created successfully")
return callback
def get_experiment_url(self) -> Optional[str]:
"""Get the URL to view the experiment in Trackio"""
if self.trackio_client and self.experiment_id:
return "{}?tab=view_experiments".format(self.trackio_client.space_url)
return None
def close(self):
"""Close the monitoring session"""
if self.enable_tracking and self.trackio_client:
try:
# Mark experiment as completed
result = self.trackio_client.update_experiment_status(
experiment_id=self.experiment_id,
status="completed"
)
if "success" in result:
logger.info("Monitoring session closed")
else:
logger.error("Failed to close monitoring session: %s", result)
except Exception as e:
logger.error("Failed to close monitoring session: %s", e)
# Final save to HF Dataset
if self.hf_dataset_client:
self._save_to_hf_dataset({'status': 'completed'})
# Utility function to create monitor from config
def create_monitor_from_config(config, experiment_name: Optional[str] = None) -> SmolLM3Monitor:
"""Create a monitor instance from configuration"""
if experiment_name is None:
experiment_name = getattr(config, 'experiment_name', 'smollm3_experiment')
return SmolLM3Monitor(
experiment_name=experiment_name,
trackio_url=getattr(config, 'trackio_url', None),
trackio_token=getattr(config, 'trackio_token', None),
enable_tracking=getattr(config, 'enable_tracking', True),
log_artifacts=getattr(config, 'log_artifacts', True),
log_metrics=getattr(config, 'log_metrics', True),
log_config=getattr(config, 'log_config', True),
hf_token=getattr(config, 'hf_token', None),
dataset_repo=getattr(config, 'dataset_repo', None)
) |