Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	File size: 8,635 Bytes
			
			| ebe598e | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 | # Interactive Pipeline Improvements
This document explains the improvements made to the `launch.sh` script to make it interactive and configurable for different training scenarios.
## π― Key Improvements
### 1. **Interactive User Interface**
- **Colored Output**: Added color-coded status messages for better UX
- **Input Validation**: Real-time validation of user inputs
- **Default Values**: Smart defaults for common configurations
- **Error Handling**: Graceful error handling with helpful messages
### 2. **Training Configuration Selection**
The script now offers 4 predefined training configurations:
#### **Basic Training (Default)**
```bash
Model: SmolLM3-3B
Dataset: SmolTalk
Epochs: 3
Batch Size: 2
Learning Rate: 5e-6
Sequence Length: 4096
Best for: Quick experiments, learning
```
#### **H100 Lightweight (Rapid)**
```bash
Model: SmolLM3-3B
Dataset: OpenHermes-FR (80K samples)
Epochs: 1
Batch Size: 16
Learning Rate: 8e-6
Sequence Length: 8192
Best for: Rapid training on H100
```
#### **A100 Large Scale**
```bash
Model: SmolLM3-3B
Dataset: OpenHermes-FR
Epochs: 1.3 passes
Batch Size: 8
Learning Rate: 5e-6
Sequence Length: 8192
Best for: High-performance training
```
#### **Multiple Passes**
```bash
Model: SmolLM3-3B
Dataset: OpenHermes-FR
Epochs: 4 passes
Batch Size: 6
Learning Rate: 3e-6
Sequence Length: 8192
Best for: Thorough training
```
#### **Custom Configuration**
- User-defined parameters
- Flexible model and dataset selection
- Custom training parameters
### 3. **Enhanced User Experience**
#### **Step-by-Step Guidance**
1. **Authentication** - HF username and token validation
2. **Configuration Selection** - Choose from predefined configs
3. **Experiment Setup** - Configure experiment details
4. **Training Parameters** - Adjust hyperparameters
5. **Deployment Setup** - Trackio Space configuration
6. **Confirmation** - Review and confirm settings
#### **Input Functions**
```bash
# Get input with default value
get_input "Prompt" "default_value" VARIABLE_NAME
# Select from options
select_option "Choose option:" "Option 1" "Option 2" "Option 3" VARIABLE_NAME
# Validate HF token
validate_hf_token "$HF_TOKEN"
```
#### **Colored Output Functions**
```bash
print_status "Success message"    # Green β
print_warning "Warning message"   # Yellow β οΈ
print_error "Error message"       # Red β
print_info "Info message"         # Blue βΉοΈ
print_header "Header message"     # Purple π
print_step "Step message"         # Cyan π
```
### 4. **Dynamic Configuration Generation**
The script now generates training configurations based on user selection:
```python
# Generated config file
config = SmolLM3Config(
    model_name="$MODEL_NAME",
    max_seq_length=$MAX_SEQ_LENGTH,
    batch_size=$BATCH_SIZE,
    learning_rate=$LEARNING_RATE,
    # ... other parameters
)
```
### 5. **Improved Error Handling**
#### **Input Validation**
- Required field validation
- HF token validation
- Numeric input validation
- Choice validation
#### **Graceful Degradation**
- Clear error messages
- Recovery suggestions
- Exit on critical errors
### 6. **Configuration Management**
#### **User Credentials**
- Interactive username input
- Secure token input
- Real-time token validation
#### **Experiment Details**
- Dynamic experiment naming
- Repository name generation
- Dataset repository configuration
#### **Training Parameters**
- Batch size selection
- Learning rate adjustment
- Sequence length configuration
- Save/eval/logging steps
### 7. **Enhanced Monitoring Integration**
#### **Trackio Space**
- Dynamic space naming
- Automatic deployment
- URL generation
#### **HF Datasets**
- Dataset repository setup
- Experiment data storage
- Access configuration
## π§ Technical Improvements
### 1. **Modular Functions**
```bash
# Input handling
get_input()          # Get user input with defaults
select_option()      # Select from options
validate_hf_token()  # Validate HF token
# Configuration
show_training_configs()    # Display available configs
get_training_config()      # Get config based on selection
create_training_config()   # Generate config file
# Output formatting
print_status()       # Success messages
print_warning()      # Warning messages
print_error()        # Error messages
print_info()         # Info messages
print_header()       # Header messages
print_step()         # Step messages
```
### 2. **Configuration Selection Logic**
```bash
case "$config_type" in
    "Basic Training")
        MODEL_NAME="HuggingFaceTB/SmolLM3-3B"
        DATASET_NAME="HuggingFaceTB/smoltalk"
        # ... other parameters
        ;;
    "A100 Large Scale")
        MODEL_NAME="HuggingFaceTB/SmolLM3-3B"
        DATASET_NAME="legmlai/openhermes-fr"
        # ... other parameters
        ;;
    # ... other configurations
esac
```
### 3. **Dynamic File Generation**
```bash
# Generate training config
create_training_config "$CONFIG_FILE"
# Generate deployment input
cat > deploy_input.txt << EOF
$HF_USERNAME
$TRACKIO_SPACE_NAME
$HF_TOKEN
EOF
```
## π User Workflow
### **Before (Static)**
1. Edit `launch.sh` manually
2. Update hardcoded variables
3. Run script
4. Hope configuration is correct
### **After (Interactive)**
1. Run `./launch.sh`
2. Follow interactive prompts
3. Select training configuration
4. Confirm settings
5. Watch automated pipeline
## π― Benefits
### **For Users**
- **No Manual Editing**: No need to edit script files
- **Guided Experience**: Step-by-step prompts
- **Validation**: Real-time input validation
- **Flexibility**: Multiple configuration options
- **Safety**: Confirmation before execution
### **For Developers**
- **Maintainable**: Modular function structure
- **Extensible**: Easy to add new configurations
- **Robust**: Comprehensive error handling
- **User-Friendly**: Clear feedback and guidance
### **For Different Use Cases**
- **Beginners**: Basic Training configuration
- **H100 Users**: H100 Lightweight for rapid experiments
- **Researchers**: A100 Large Scale for serious experiments
- **Production**: Multiple Passes for thorough training
- **Custom**: User-defined parameters for specific needs
## π Configuration Examples
### **Quick Start (Basic Training)**
```bash
./launch.sh
# Follow prompts:
# 1. Enter HF username and token
# 2. Select "Basic Training"
# 3. Confirm settings
# 4. Watch automated pipeline
```
### **High-Performance Training (A100)**
```bash
./launch.sh
# Follow prompts:
# 1. Enter HF username and token
# 2. Select "A100 Large Scale"
# 3. Adjust parameters if needed
# 4. Confirm and run
```
### **Rapid Training (H100)**
```bash
./launch.sh
# Follow prompts:
# 1. Enter HF username and token
# 2. Select "H100 Lightweight (Rapid)"
# 3. Confirm settings
# 4. Watch rapid training on H100
```
### **Custom Training**
```bash
./launch.sh
# Follow prompts:
# 1. Enter HF username and token
# 2. Select "Custom Configuration"
# 3. Enter custom parameters:
#    - Model: microsoft/DialoGPT-medium
#    - Dataset: your-custom-dataset
#    - Epochs: 5
#    - Batch Size: 4
#    - Learning Rate: 1e-5
# 4. Confirm and run
```
## π Future Enhancements
### **Planned Improvements**
- **GUI Interface**: Web-based configuration interface
- **Configuration Templates**: Save/load custom configurations
- **Advanced Validation**: More sophisticated input validation
- **Progress Tracking**: Real-time progress indicators
- **Rollback Capability**: Undo changes if needed
### **Extensibility**
- **Plugin System**: Add custom training configurations
- **API Integration**: Connect to external services
- **Multi-GPU Support**: Distributed training options
- **Advanced Monitoring**: Enhanced tracking capabilities
## π Migration Guide
### **For Existing Users**
1. **Backup**: Save your current `launch.sh`
2. **Update**: Replace with new interactive version
3. **Test**: Run with basic configuration first
4. **Migrate**: Use interactive prompts instead of manual editing
### **For New Users**
1. **Setup**: Run `python setup_launch.py`
2. **Check**: Run `python check_requirements.py`
3. **Launch**: Run `./launch.sh`
4. **Follow**: Use interactive prompts
## π Conclusion
The interactive pipeline provides a much better user experience with:
- **Guided Configuration**: No manual editing required
- **Multiple Options**: Predefined configurations for different use cases
- **Validation**: Real-time input validation and error handling
- **Flexibility**: Custom configuration support
- **Safety**: Confirmation steps and error recovery
The script is now production-ready for users of all skill levels, from beginners to advanced researchers.  | 
