Spaces:
Running
Running
File size: 11,508 Bytes
5fe83da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
# Cloud Training Guide for OpenHermes-FR Dataset
This guide provides step-by-step instructions for training SmolLM3 models on cloud instances using the [legmlai/openhermes-fr](https://huggingface.co/datasets/legmlai/openhermes-fr) dataset.
## Overview
The OpenHermes-FR dataset contains 799,875 French instruction-response pairs, perfect for fine-tuning SmolLM3 models for French language tasks. This guide covers:
- ✅ **Cloud Instance Setup** - Complete environment configuration
- ✅ **Dataset Integration** - Automatic loading and filtering
- ✅ **Training Configuration** - Optimized for French instruction tuning
- ✅ **Monitoring Integration** - Trackio experiment tracking
- ✅ **Model Deployment** - Push to Hugging Face Hub
## Dataset Information
### Schema
```json
{
"prompt": "Explique la différence entre la photosynthèse C3 et C4.",
"accepted_completion": "La photosynthèse C3 utilise… (réponse détaillée)",
"bad_prompt_detected": false,
"bad_response_detected": false,
"bad_entry": false
}
```
### Key Features
- **Size**: 799,875 examples (~1.4GB)
- **Language**: 100% French
- **Quality**: GPT-4o generated responses with automatic filtering
- **License**: ODC-BY 1.0
## Cloud Instance Setup
### 1. Choose Your Cloud Provider
#### **AWS EC2 (Recommended)**
```bash
# Launch instance with GPU
# Recommended: g4dn.xlarge or g5.xlarge
# AMI: Deep Learning AMI (Ubuntu 20.04)
```
#### **Google Cloud Platform**
```bash
# Launch instance with GPU
# Recommended: n1-standard-4 with Tesla T4 or V100
```
#### **Azure**
```bash
# Launch instance with GPU
# Recommended: Standard_NC6s_v3 or Standard_NC12s_v3
```
### 2. Instance Specifications
#### **Minimum Requirements**
- **GPU**: 16GB+ VRAM (Tesla T4, V100, or A100)
- **RAM**: 32GB+ system memory
- **Storage**: 100GB+ SSD
- **CPU**: 8+ cores
#### **Recommended Specifications**
- **GPU**: A100 (40GB) or H100 (80GB)
- **RAM**: 64GB+ system memory
- **Storage**: 200GB+ NVMe SSD
- **CPU**: 16+ cores
### 3. Environment Setup
```bash
# Update system
sudo apt update && sudo apt upgrade -y
# Install CUDA (if not pre-installed)
# Follow NVIDIA CUDA installation guide for your GPU
# Install Python dependencies
sudo apt install python3-pip python3-venv git -y
# Create virtual environment
python3 -m venv smollm3_env
source smollm3_env/bin/activate
# Clone repository
git clone <your-repo-url>
cd <your-repo-directory>
# Install dependencies
pip install -r requirements.txt
# Install additional dependencies for cloud training
pip install accelerate transformers datasets huggingface_hub
```
## Training Configuration
### 1. Use the OpenHermes-FR Config
The repository includes a specialized configuration for the OpenHermes-FR dataset:
```bash
python train.py config/train_smollm3_openhermes_fr.py \
--enable_tracking \
--trackio_url "https://your-space.hf.space" \
--experiment_name "smollm3_fr_openhermes_v1"
```
### 2. Configuration Details
The `config/train_smollm3_openhermes_fr.py` includes:
#### **Dataset Configuration**
```python
dataset_name: str = "legmlai/openhermes-fr"
dataset_split: str = "train"
input_field: str = "prompt"
target_field: str = "accepted_completion"
filter_bad_entries: bool = True
bad_entry_field: str = "bad_entry"
```
#### **Training Optimization**
```python
batch_size: int = 2 # Reduced for French text (longer sequences)
gradient_accumulation_steps: int = 8 # Maintains effective batch size
learning_rate: float = 1e-5 # Lower for instruction tuning
max_iters: int = 2000 # More iterations for large dataset
```
#### **Monitoring Integration**
```python
enable_tracking: bool = True
experiment_name: str = "smollm3_openhermes_fr"
```
## Training Commands
### Basic Training
```bash
python train.py config/train_smollm3_openhermes_fr.py
```
### Training with Monitoring
```bash
python train.py config/train_smollm3_openhermes_fr.py \
--enable_tracking \
--trackio_url "https://your-trackio-space.hf.space" \
--experiment_name "smollm3_fr_openhermes_v1"
```
### Training with Custom Parameters
```bash
python train.py config/train_smollm3_openhermes_fr.py \
--batch_size 4 \
--learning_rate 2e-5 \
--max_iters 3000 \
--enable_tracking \
--trackio_url "https://your-trackio-space.hf.space" \
--experiment_name "smollm3_fr_high_lr"
```
### Training with Checkpoint Resume
```bash
python train.py config/train_smollm3_openhermes_fr.py \
--init_from resume \
--enable_tracking \
--trackio_url "https://your-trackio-space.hf.space" \
--experiment_name "smollm3_fr_resume"
```
## Dataset Processing
### Automatic Filtering
The training script automatically:
- ✅ **Loads** the OpenHermes-FR dataset from Hugging Face
- ✅ **Filters** out bad entries (`bad_entry = true`)
- ✅ **Splits** data into train/validation/test (98/1/1)
- ✅ **Formats** prompts and completions for instruction tuning
### Manual Dataset Inspection
```python
from datasets import load_dataset
# Load dataset
dataset = load_dataset("legmlai/openhermes-fr")
# Check dataset info
print(f"Dataset size: {len(dataset['train'])}")
print(f"Sample columns: {dataset['train'].column_names}")
# Check filtering
bad_entries = dataset['train'].filter(lambda x: x['bad_entry'])
print(f"Bad entries: {len(bad_entries)}")
# Sample data
sample = dataset['train'][0]
print(f"Prompt: {sample['prompt']}")
print(f"Completion: {sample['accepted_completion']}")
```
## Monitoring and Tracking
### Trackio Integration
The training automatically logs:
- **Training metrics**: Loss, accuracy, learning rate
- **System metrics**: GPU memory, CPU usage
- **Dataset info**: Size, filtering statistics
- **Model checkpoints**: Regular saves with metadata
### View Training Progress
1. **Trackio Space**: Visit your Trackio Space URL
2. **Experiment Details**: Check the "View Experiments" tab
3. **Metrics**: Monitor loss curves and system usage
4. **Logs**: Download training logs for analysis
## Model Deployment
### Push to Hugging Face Hub
After training, deploy your model:
```bash
python push_to_huggingface.py /output-checkpoint username/smollm3-fr-openhermes \
--trackio-url "https://your-trackio-space.hf.space" \
--experiment-name "smollm3_fr_openhermes_v1"
```
### Use Your Model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load your fine-tuned model
model = AutoModelForCausalLM.from_pretrained("username/smollm3-fr-openhermes")
tokenizer = AutoTokenizer.from_pretrained("username/smollm3-fr-openhermes")
# Generate French text
prompt = "Expliquez le concept de l'intelligence artificielle."
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=200)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Performance Optimization
### GPU Memory Management
```bash
# Monitor GPU usage
nvidia-smi -l 1
# Optimize for your GPU
# For 16GB VRAM: batch_size=2, gradient_accumulation_steps=8
# For 24GB VRAM: batch_size=4, gradient_accumulation_steps=4
# For 40GB+ VRAM: batch_size=8, gradient_accumulation_steps=2
```
### Training Speed
```bash
# Use mixed precision (enabled by default)
fp16: bool = True
# Enable gradient checkpointing (enabled by default)
use_gradient_checkpointing: bool = True
# Use flash attention (enabled by default)
use_flash_attention: bool = True
```
## Troubleshooting
### Common Issues
#### 1. **Out of Memory (OOM)**
```bash
# Reduce batch size
python train.py config/train_smollm3_openhermes_fr.py --batch_size 1
# Increase gradient accumulation
# Edit config: gradient_accumulation_steps = 16
```
#### 2. **Slow Training**
```bash
# Check GPU utilization
nvidia-smi
# Verify data loading
# Check if dataset is cached locally
```
#### 3. **Dataset Loading Issues**
```bash
# Clear cache
rm -rf ~/.cache/huggingface/
# Check internet connection
# Verify dataset name: "legmlai/openhermes-fr"
```
#### 4. **Monitoring Connection Issues**
```bash
# Test Trackio connection
curl -I https://your-trackio-space.hf.space
# Check token permissions
# Verify experiment name format
```
### Debug Mode
```bash
# Enable debug logging
export LOG_LEVEL=DEBUG
python train.py config/train_smollm3_openhermes_fr.py
```
## Cost Optimization
### Cloud Provider Tips
#### **AWS EC2**
- Use Spot Instances for cost savings
- Monitor usage with CloudWatch
- Use appropriate instance types
#### **Google Cloud Platform**
- Use Preemptible VMs for non-critical training
- Monitor with Cloud Monitoring
- Use committed use discounts
#### **Azure**
- Use Spot VMs for cost optimization
- Monitor with Azure Monitor
- Use reserved instances for long training
### Training Time Estimates
| GPU Type | Batch Size | Estimated Time |
|----------|------------|----------------|
| Tesla T4 (16GB) | 2 | 8-12 hours |
| V100 (32GB) | 4 | 4-6 hours |
| A100 (40GB) | 8 | 2-3 hours |
| H100 (80GB) | 16 | 1-2 hours |
## Security Best Practices
### Token Management
```bash
# Use environment variables
export HF_TOKEN="your_token_here"
export TRACKIO_TOKEN="your_trackio_token"
# Don't hardcode in scripts
# Use IAM roles when possible
```
### Data Privacy
```bash
# Use private repositories for sensitive models
python push_to_huggingface.py model username/private-model --private
# Secure your cloud instance
# Use VPC and security groups
```
## Complete Workflow Example
### 1. Setup Cloud Instance
```bash
# Launch GPU instance
# Install dependencies
git clone <your-repo>
cd <your-repo>
pip install -r requirements.txt
```
### 2. Train Model
```bash
python train.py config/train_smollm3_openhermes_fr.py \
--enable_tracking \
--trackio_url "https://your-space.hf.space" \
--experiment_name "smollm3_fr_v1"
```
### 3. Deploy Model
```bash
python push_to_huggingface.py /output-checkpoint username/smollm3-fr-v1 \
--trackio-url "https://your-space.hf.space" \
--experiment-name "smollm3_fr_v1"
```
### 4. Test Model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("username/smollm3-fr-v1")
tokenizer = AutoTokenizer.from_pretrained("username/smollm3-fr-v1")
# Test French generation
prompt = "Qu'est-ce que l'apprentissage automatique?"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Support and Resources
### Documentation
- [OpenHermes-FR Dataset](https://huggingface.co/datasets/legmlai/openhermes-fr)
- [SmolLM3 Model](https://huggingface.co/HuggingFaceTB/SmolLM3-3B)
- [Trackio Monitoring](https://github.com/Josephrp/trackio)
### Community
- [Hugging Face Forums](https://discuss.huggingface.co/)
- [Transformers Documentation](https://huggingface.co/docs/transformers/)
### Examples
- [French Language Models](https://huggingface.co/models?search=french)
- [Instruction Tuned Models](https://huggingface.co/models?pipeline_tag=text-generation&sort=downloads)
## Conclusion
This guide provides everything needed to train SmolLM3 models on the OpenHermes-FR dataset in the cloud:
- ✅ **Complete Setup** - From cloud instance to model deployment
- ✅ **Optimized Configuration** - Tailored for French instruction tuning
- ✅ **Monitoring Integration** - Trackio experiment tracking
- ✅ **Cost Optimization** - Tips for efficient cloud usage
- ✅ **Troubleshooting** - Solutions for common issues
Start training your French language model today! |