Tohirju commited on
Commit
858b02e
·
verified ·
1 Parent(s): 337b29f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +258 -55
app.py CHANGED
@@ -1,64 +1,267 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import os
3
+ import time
4
+ from typing import Iterator
5
+ import threading
6
 
7
+ # Global variables
8
+ llm = None
9
+ model_loading = True
10
+ model_error = None
11
 
12
+ def load_model():
13
+ """Load the GGUF model"""
14
+ global llm, model_loading, model_error
15
+
16
+ try:
17
+ print("🔄 Loading model...")
18
+ from llama_cpp import Llama
19
+
20
+ # Initialize model with optimized settings for CPU-only inference
21
+ llm = Llama.from_pretrained(
22
+ repo_id="Tohirju/Ameena_Qwen3-8B_e3_Quantised_gguf",
23
+ filename="Ameena_Qwen3-8B_e3.gguf",
24
+ # CPU-optimized settings
25
+ n_ctx=2048, # Context length
26
+ n_threads=None, # Use all available CPU threads
27
+ n_gpu_layers=0, # CPU only
28
+ use_mmap=True, # Memory mapping for efficiency
29
+ use_mlock=False, # Don't lock memory (can cause issues on some systems)
30
+ n_batch=512, # Batch size for prompt processing
31
+ verbose=False, # Reduce output noise
32
+ # Additional optimizations
33
+ offload_kqv=False, # Keep KV cache on CPU
34
+ f16_kv=True, # Use 16-bit for KV cache
35
+ )
36
+
37
+ model_loading = False
38
+ print("✅ Model loaded successfully!")
39
+
40
+ except Exception as e:
41
+ model_error = f"Model loading failed: {str(e)}"
42
+ model_loading = False
43
+ print(f"❌ {model_error}")
44
 
45
+ def chat_with_model(
46
+ message: str,
47
+ history: list,
48
+ system_message: str = "Шумо ёвари хуб ҳастед ва ба забони тоҷикӣ ҷавоб медиҳед.",
49
+ max_tokens: int = 150,
50
+ temperature: float = 0.7,
51
+ top_p: float = 0.9,
52
+ ) -> Iterator[str]:
53
+ """
54
+ Chat function that streams responses
55
+ """
56
+ # Check if model is ready
57
+ if model_loading:
58
+ yield "⏳ Model is still loading, please wait..."
59
+ return
60
+
61
+ if model_error:
62
+ yield f"❌ Model error: {model_error}"
63
+ return
64
+
65
+ if llm is None:
66
+ yield "❌ Model not loaded. Please refresh the page."
67
+ return
68
+
69
+ try:
70
+ # Build conversation history
71
+ messages = []
72
+
73
+ # Add system message if provided
74
+ if system_message.strip():
75
+ messages.append({"role": "system", "content": system_message})
76
+
77
+ # Add conversation history
78
+ for user_msg, assistant_msg in history:
79
+ if user_msg:
80
+ messages.append({"role": "user", "content": user_msg})
81
+ if assistant_msg:
82
+ messages.append({"role": "assistant", "content": assistant_msg})
83
+
84
+ # Add current message
85
+ messages.append({"role": "user", "content": message})
86
+
87
+ # Generate response with streaming
88
+ response_stream = llm.create_chat_completion(
89
+ messages=messages,
90
+ max_tokens=max_tokens,
91
+ temperature=temperature,
92
+ top_p=top_p,
93
+ stream=True,
94
+ stop=["</s>", "User:", "Human:", "Assistant:"],
95
+ repeat_penalty=1.1,
96
+ )
97
+
98
+ # Stream the response
99
+ partial_response = ""
100
+ for chunk in response_stream:
101
+ if chunk["choices"][0]["delta"].get("content"):
102
+ partial_response += chunk["choices"][0]["delta"]["content"]
103
+ yield partial_response
104
+
105
+ except Exception as e:
106
+ yield f"❌ Generation error: {str(e)}"
107
 
108
+ def get_model_status():
109
+ """Get current model status"""
110
+ if model_loading:
111
+ return "🔄 Loading model... Please wait."
112
+ elif model_error:
113
+ return f"❌ Error: {model_error}"
114
+ elif llm is not None:
115
+ return "✅ Model ready!"
116
+ else:
117
+ return "❓ Unknown status"
118
 
119
+ # Load model in background thread
120
+ model_thread = threading.Thread(target=load_model, daemon=True)
121
+ model_thread.start()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
 
123
+ # Create Gradio interface
124
+ with gr.Blocks(
125
+ title="🇹🇯 Ameena Qwen3-8B Tajik Language Model",
126
+ theme=gr.themes.Soft(),
127
+ css="""
128
+ .gradio-container {
129
+ max-width: 800px !important;
130
+ margin: auto !important;
131
+ }
132
+ """
133
+ ) as demo:
134
+
135
+ gr.Markdown("""
136
+ # 🇹🇯 Ameena Qwen3-8B - Tajik Language Model
137
+
138
+ **Model**: Quantized GGUF (4GB) | **Backend**: CPU Only | **Language**: Tajik
139
+
140
+ Base model: Qwen3-8B fine-tuned for Tajik language
141
+ """)
142
+
143
+ # Model status
144
+ status_display = gr.Markdown(get_model_status())
145
+
146
+ # Main chat interface
147
+ chatbot = gr.Chatbot(
148
+ height=400,
149
+ show_label=False,
150
+ show_copy_button=True,
151
+ )
152
+
153
+ with gr.Row():
154
+ msg = gr.Textbox(
155
+ placeholder="Салом! Саволи худро дар ин ҷо бинависед... (Hello! Write your question here...)",
156
+ show_label=False,
157
+ scale=4
158
+ )
159
+ submit_btn = gr.Button("Send", scale=1, variant="primary")
160
+
161
+ # Advanced settings
162
+ with gr.Accordion("⚙️ Settings", open=False):
163
+ system_msg = gr.Textbox(
164
+ value="Шумо ёвари хуб ҳастед ва ба забони тоҷикӣ ҷавоб медиҳед.",
165
+ label="System Message (Tajik)",
166
+ info="Instructions for the model in Tajik language"
167
+ )
168
+
169
+ with gr.Row():
170
+ max_tokens = gr.Slider(
171
+ minimum=50,
172
+ maximum=300,
173
+ value=150,
174
+ step=10,
175
+ label="Max Tokens",
176
+ info="Maximum response length"
177
+ )
178
+ temperature = gr.Slider(
179
+ minimum=0.1,
180
+ maximum=1.5,
181
+ value=0.7,
182
+ step=0.1,
183
+ label="Temperature",
184
+ info="Response creativity (higher = more creative)"
185
+ )
186
+ top_p = gr.Slider(
187
+ minimum=0.1,
188
+ maximum=1.0,
189
+ value=0.9,
190
+ step=0.05,
191
+ label="Top-p",
192
+ info="Nucleus sampling parameter"
193
+ )
194
+
195
+ # Example prompts
196
+ gr.Examples(
197
+ examples=[
198
+ ["Салом! Чӣ хел ҳастед?"],
199
+ ["Тоҷикистон дар куҷо ҷойгир аст?"],
200
+ ["Барномасозӣ чист ва чӣ гуна кор мекунад?"],
201
+ ["Оиди забони тоҷикӣ маълумот диҳед"],
202
+ ["Шеър дар бораи табиат нависед"],
203
+ ],
204
+ inputs=msg,
205
+ label="💡 Example Questions"
206
+ )
207
+
208
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
209
+ """Handle user message and generate response"""
210
+ if not message.strip():
211
+ return history, ""
212
+
213
+ # Add user message to history
214
+ history.append([message, None])
215
+
216
+ # Generate response
217
+ response_generator = chat_with_model(
218
+ message, history[:-1], system_message, max_tokens, temperature, top_p
219
+ )
220
+
221
+ # Stream response
222
+ for partial_response in response_generator:
223
+ history[-1][1] = partial_response
224
+ yield history, ""
225
+
226
+ return history, ""
227
+
228
+ def clear_chat():
229
+ """Clear chat history"""
230
+ return [], ""
231
+
232
+ def update_status():
233
+ """Update model status display"""
234
+ return get_model_status()
235
+
236
+ # Event handlers
237
+ submit_btn.click(
238
+ respond,
239
+ inputs=[msg, chatbot, system_msg, max_tokens, temperature, top_p],
240
+ outputs=[chatbot, msg]
241
+ )
242
+
243
+ msg.submit(
244
+ respond,
245
+ inputs=[msg, chatbot, system_msg, max_tokens, temperature, top_p],
246
+ outputs=[chatbot, msg]
247
+ )
248
+
249
+ # Clear button
250
+ clear_btn = gr.Button("🗑️ Clear Chat", variant="secondary")
251
+ clear_btn.click(clear_chat, outputs=[chatbot, msg])
252
+
253
+ # Refresh status button
254
+ refresh_btn = gr.Button("🔄 Refresh Status", variant="secondary")
255
+ refresh_btn.click(update_status, outputs=status_display)
256
+
257
+ # Auto-refresh status every 5 seconds during loading
258
+ demo.load(update_status, outputs=status_display, every=5)
259
 
260
  if __name__ == "__main__":
261
+ demo.launch(
262
+ server_name="0.0.0.0",
263
+ server_port=7860,
264
+ show_error=True,
265
+ share=False,
266
+ quiet=False,
267
+ )