from fastai.vision.all import * import gradio as gr import pathlib plt = platform.system() if plt == 'Windows': pathlib.PosixPath = pathlib.WindowsPath if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath def label_func(x): if int((x.split('.')[0].lstrip('0'))) <= 5: return 'Mogged' else: return 'Mogger' learn = load_learner('mommodel.pkl') categories = {'Mogger', 'Mogged'} def classify_img(image): # what, _t , _ = learn.predict(image) # return what pred, idx, probs = learn.predict(image) return dict(zip(categories, map(float, probs))) # image = gr.Image(shape=(224,224)) image = gr.Image() label = gr.Label() examples = ['001.jpg','002.jpg','007.jpg','008.jpg','004.jpg'] intf = gr.Interface(fn=classify_img, inputs=image, outputs=label, examples=examples) intf.launch(inline=False)