Tobias Bergmann
commited on
Commit
·
518754f
1
Parent(s):
7d00bdf
tps field
Browse files
app.py
CHANGED
|
@@ -2,7 +2,7 @@ from llama_cpp import Llama
|
|
| 2 |
from huggingface_hub import hf_hub_download
|
| 3 |
import gradio as gr
|
| 4 |
from typing import Tuple, List
|
| 5 |
-
import time
|
| 6 |
|
| 7 |
DESCRIPTION = f"""
|
| 8 |
# Chat with Arco 500M as GGUF on CPU
|
|
@@ -36,26 +36,26 @@ def predict(message: str, history: List[List[str]], max_new_tokens: int = DEFAUL
|
|
| 36 |
|
| 37 |
# Initialize reply for this round
|
| 38 |
reply = ""
|
| 39 |
-
|
| 40 |
# Initialize token count and start time
|
| 41 |
token_count = 0
|
| 42 |
start_time = time.time()
|
| 43 |
-
|
| 44 |
# This will produce a generator of output chunks
|
| 45 |
stream = pipe(
|
| 46 |
-
prompt,
|
| 47 |
max_tokens=max_new_tokens,
|
| 48 |
stop=["</s>"],
|
| 49 |
stream=True
|
| 50 |
)
|
| 51 |
-
|
| 52 |
# Send each token stream output to the user
|
| 53 |
for output in stream:
|
| 54 |
new_text = output['choices'][0]['text']
|
| 55 |
reply += new_text
|
| 56 |
token_count += len(new_text.split()) # Estimate tokens by counting spaces
|
| 57 |
history[-1][1] = reply # Update the current reply in history
|
| 58 |
-
|
| 59 |
# Calculate elapsed time and TPS
|
| 60 |
elapsed_time = time.time() - start_time
|
| 61 |
if elapsed_time > 0:
|
|
@@ -81,6 +81,6 @@ with gr.Blocks() as demo:
|
|
| 81 |
label="Max New Tokens",
|
| 82 |
)
|
| 83 |
status_field = gr.Text(label="Status", interactive=False, visible=True) # Add Status field
|
| 84 |
-
textbox.submit(predict, [textbox, chatbot, max_new_tokens_slider], [textbox, chatbot],
|
| 85 |
|
| 86 |
-
demo.queue().launch()
|
|
|
|
| 2 |
from huggingface_hub import hf_hub_download
|
| 3 |
import gradio as gr
|
| 4 |
from typing import Tuple, List
|
| 5 |
+
import time
|
| 6 |
|
| 7 |
DESCRIPTION = f"""
|
| 8 |
# Chat with Arco 500M as GGUF on CPU
|
|
|
|
| 36 |
|
| 37 |
# Initialize reply for this round
|
| 38 |
reply = ""
|
| 39 |
+
|
| 40 |
# Initialize token count and start time
|
| 41 |
token_count = 0
|
| 42 |
start_time = time.time()
|
| 43 |
+
|
| 44 |
# This will produce a generator of output chunks
|
| 45 |
stream = pipe(
|
| 46 |
+
prompt,
|
| 47 |
max_tokens=max_new_tokens,
|
| 48 |
stop=["</s>"],
|
| 49 |
stream=True
|
| 50 |
)
|
| 51 |
+
|
| 52 |
# Send each token stream output to the user
|
| 53 |
for output in stream:
|
| 54 |
new_text = output['choices'][0]['text']
|
| 55 |
reply += new_text
|
| 56 |
token_count += len(new_text.split()) # Estimate tokens by counting spaces
|
| 57 |
history[-1][1] = reply # Update the current reply in history
|
| 58 |
+
|
| 59 |
# Calculate elapsed time and TPS
|
| 60 |
elapsed_time = time.time() - start_time
|
| 61 |
if elapsed_time > 0:
|
|
|
|
| 81 |
label="Max New Tokens",
|
| 82 |
)
|
| 83 |
status_field = gr.Text(label="Status", interactive=False, visible=True) # Add Status field
|
| 84 |
+
textbox.submit(predict, [textbox, chatbot, max_new_tokens_slider], [textbox, chatbot], )
|
| 85 |
|
| 86 |
+
demo.queue().launch()
|