Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,10 +8,10 @@ from PIL import Image
|
|
| 8 |
import spaces
|
| 9 |
import torch
|
| 10 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
| 11 |
-
from diffusers import AuraFlowPipeline
|
| 12 |
-
|
| 13 |
|
| 14 |
DESCRIPTIONx = """
|
|
|
|
|
|
|
| 15 |
"""
|
| 16 |
|
| 17 |
css = '''
|
|
@@ -22,10 +22,17 @@ footer {
|
|
| 22 |
}
|
| 23 |
'''
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
MODEL_OPTIONS = {
|
| 26 |
"Lightning": "SG161222/RealVisXL_V4.0_Lightning",
|
| 27 |
"Realvision": "SG161222/RealVisXL_V4.0",
|
| 28 |
-
"AuraFlow": "fal/AuraFlow",
|
| 29 |
}
|
| 30 |
|
| 31 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
|
@@ -36,29 +43,23 @@ BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
|
|
| 36 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 37 |
|
| 38 |
def load_and_prepare_model(model_id):
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 48 |
-
use_safetensors=True,
|
| 49 |
-
add_watermarker=False,
|
| 50 |
-
).to(device)
|
| 51 |
-
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 52 |
-
|
| 53 |
if USE_TORCH_COMPILE:
|
| 54 |
pipe.compile()
|
| 55 |
-
|
| 56 |
if ENABLE_CPU_OFFLOAD:
|
| 57 |
pipe.enable_model_cpu_offload()
|
| 58 |
-
|
| 59 |
return pipe
|
| 60 |
|
| 61 |
-
# Preload and compile
|
| 62 |
models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
|
| 63 |
|
| 64 |
MAX_SEED = np.iinfo(np.int32).max
|
|
@@ -91,7 +92,7 @@ def generate(
|
|
| 91 |
):
|
| 92 |
global models
|
| 93 |
pipe = models[model_choice]
|
| 94 |
-
|
| 95 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 96 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 97 |
|
|
@@ -138,7 +139,7 @@ def load_predefined_images():
|
|
| 138 |
return predefined_images
|
| 139 |
|
| 140 |
with gr.Blocks(css=css) as demo:
|
| 141 |
-
gr.Markdown(DESCRIPTIONx)
|
| 142 |
with gr.Row():
|
| 143 |
prompt = gr.Text(
|
| 144 |
label="Prompt",
|
|
@@ -149,7 +150,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 149 |
container=False,
|
| 150 |
)
|
| 151 |
run_button = gr.Button("Run⚡", scale=0)
|
| 152 |
-
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
| 153 |
|
| 154 |
with gr.Row():
|
| 155 |
model_choice = gr.Dropdown(
|
|
@@ -216,13 +217,19 @@ with gr.Blocks(css=css) as demo:
|
|
| 216 |
value=20,
|
| 217 |
)
|
| 218 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
use_negative_prompt.change(
|
| 220 |
fn=lambda x: gr.update(visible=x),
|
| 221 |
inputs=use_negative_prompt,
|
| 222 |
outputs=negative_prompt,
|
| 223 |
api_name=False,
|
| 224 |
)
|
| 225 |
-
|
| 226 |
gr.on(
|
| 227 |
triggers=[
|
| 228 |
prompt.submit,
|
|
@@ -246,6 +253,266 @@ with gr.Blocks(css=css) as demo:
|
|
| 246 |
outputs=[result, seed],
|
| 247 |
api_name="run",
|
| 248 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
if __name__ == "__main__":
|
| 251 |
demo.queue(max_size=40).launch(show_api=False)
|
|
|
|
| 8 |
import spaces
|
| 9 |
import torch
|
| 10 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
|
|
|
|
|
|
| 11 |
|
| 12 |
DESCRIPTIONx = """
|
| 13 |
+
|
| 14 |
+
|
| 15 |
"""
|
| 16 |
|
| 17 |
css = '''
|
|
|
|
| 22 |
}
|
| 23 |
'''
|
| 24 |
|
| 25 |
+
#examples = [
|
| 26 |
+
# "3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)",
|
| 27 |
+
# "Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic oil --ar 2:3 --q 2 --s 750 --v 5 --ar 2:3 --q 2 --s 750 --v 5",
|
| 28 |
+
# "Illustration of A starry night camp in the mountains. Low-angle view, Minimal background, Geometric shapes theme, Pottery, Split-complementary colors, Bicolored light, UHD",
|
| 29 |
+
# "Man in brown leather jacket posing for camera, in the style of sleek and stylized, clockpunk, subtle shades, exacting precision, ferrania p30 --ar 67:101 --v 5",
|
| 30 |
+
# "Commercial photography, giant burger, white lighting, studio light, 8k octane rendering, high resolution photography, insanely detailed, fine details, on white isolated plain, 8k, commercial photography, stock photo, professional color grading, --v 4 --ar 9:16 "
|
| 31 |
+
#]
|
| 32 |
+
|
| 33 |
MODEL_OPTIONS = {
|
| 34 |
"Lightning": "SG161222/RealVisXL_V4.0_Lightning",
|
| 35 |
"Realvision": "SG161222/RealVisXL_V4.0",
|
|
|
|
| 36 |
}
|
| 37 |
|
| 38 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
|
|
|
| 43 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 44 |
|
| 45 |
def load_and_prepare_model(model_id):
|
| 46 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 47 |
+
model_id,
|
| 48 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 49 |
+
use_safetensors=True,
|
| 50 |
+
add_watermarker=False,
|
| 51 |
+
).to(device)
|
| 52 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 53 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
if USE_TORCH_COMPILE:
|
| 55 |
pipe.compile()
|
| 56 |
+
|
| 57 |
if ENABLE_CPU_OFFLOAD:
|
| 58 |
pipe.enable_model_cpu_offload()
|
| 59 |
+
|
| 60 |
return pipe
|
| 61 |
|
| 62 |
+
# Preload and compile both models
|
| 63 |
models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
|
| 64 |
|
| 65 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
| 92 |
):
|
| 93 |
global models
|
| 94 |
pipe = models[model_choice]
|
| 95 |
+
|
| 96 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 97 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 98 |
|
|
|
|
| 139 |
return predefined_images
|
| 140 |
|
| 141 |
with gr.Blocks(css=css) as demo:
|
| 142 |
+
gr.Markdown(DESCRIPTIONx)
|
| 143 |
with gr.Row():
|
| 144 |
prompt = gr.Text(
|
| 145 |
label="Prompt",
|
|
|
|
| 150 |
container=False,
|
| 151 |
)
|
| 152 |
run_button = gr.Button("Run⚡", scale=0)
|
| 153 |
+
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
| 154 |
|
| 155 |
with gr.Row():
|
| 156 |
model_choice = gr.Dropdown(
|
|
|
|
| 217 |
value=20,
|
| 218 |
)
|
| 219 |
|
| 220 |
+
# gr.Examples(
|
| 221 |
+
# examples=examples,
|
| 222 |
+
# inputs=prompt,
|
| 223 |
+
# cache_examples=False
|
| 224 |
+
#)
|
| 225 |
+
|
| 226 |
use_negative_prompt.change(
|
| 227 |
fn=lambda x: gr.update(visible=x),
|
| 228 |
inputs=use_negative_prompt,
|
| 229 |
outputs=negative_prompt,
|
| 230 |
api_name=False,
|
| 231 |
)
|
| 232 |
+
|
| 233 |
gr.on(
|
| 234 |
triggers=[
|
| 235 |
prompt.submit,
|
|
|
|
| 253 |
outputs=[result, seed],
|
| 254 |
api_name="run",
|
| 255 |
)
|
| 256 |
+
#!/usr/bin/env python
|
| 257 |
+
import os
|
| 258 |
+
import random
|
| 259 |
+
import uuid
|
| 260 |
+
import gradio as gr
|
| 261 |
+
import numpy as np
|
| 262 |
+
from PIL import Image
|
| 263 |
+
import spaces
|
| 264 |
+
import torch
|
| 265 |
+
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
| 266 |
+
|
| 267 |
+
DESCRIPTIONx = """
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
"""
|
| 271 |
+
|
| 272 |
+
css = '''
|
| 273 |
+
.gradio-container{max-width: 570px !important}
|
| 274 |
+
h1{text-align:center}
|
| 275 |
+
footer {
|
| 276 |
+
visibility: hidden
|
| 277 |
+
}
|
| 278 |
+
'''
|
| 279 |
+
|
| 280 |
+
examples = [
|
| 281 |
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
| 282 |
+
"Chocolate dripping from a donut against a yellow background, 8k",
|
| 283 |
+
"Illustration of A starry night camp in the mountains, 4k",
|
| 284 |
+
"A photo of a lavender cat, hdr, 4k",
|
| 285 |
+
"A delicious ceviche cheesecake slice, 4k"
|
| 286 |
+
]
|
| 287 |
+
|
| 288 |
+
MODEL_OPTIONS = {
|
| 289 |
+
"Lightning": "SG161222/RealVisXL_V4.0_Lightning",
|
| 290 |
+
"Realvision": "SG161222/RealVisXL_V4.0",
|
| 291 |
+
}
|
| 292 |
+
|
| 293 |
+
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
| 294 |
+
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
| 295 |
+
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
| 296 |
+
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
|
| 297 |
+
|
| 298 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 299 |
+
|
| 300 |
+
def load_and_prepare_model(model_id):
|
| 301 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 302 |
+
model_id,
|
| 303 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 304 |
+
use_safetensors=True,
|
| 305 |
+
add_watermarker=False,
|
| 306 |
+
).to(device)
|
| 307 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 308 |
+
|
| 309 |
+
if USE_TORCH_COMPILE:
|
| 310 |
+
pipe.compile()
|
| 311 |
+
|
| 312 |
+
if ENABLE_CPU_OFFLOAD:
|
| 313 |
+
pipe.enable_model_cpu_offload()
|
| 314 |
+
|
| 315 |
+
return pipe
|
| 316 |
+
|
| 317 |
+
# Preload and compile both models
|
| 318 |
+
models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
|
| 319 |
+
|
| 320 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 321 |
|
| 322 |
+
def save_image(img):
|
| 323 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
| 324 |
+
img.save(unique_name)
|
| 325 |
+
return unique_name
|
| 326 |
+
|
| 327 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 328 |
+
if randomize_seed:
|
| 329 |
+
seed = random.randint(0, MAX_SEED)
|
| 330 |
+
return seed
|
| 331 |
+
|
| 332 |
+
@spaces.GPU(duration=60, enable_queue=True)
|
| 333 |
+
def generate(
|
| 334 |
+
model_choice: str,
|
| 335 |
+
prompt: str,
|
| 336 |
+
negative_prompt: str = "",
|
| 337 |
+
use_negative_prompt: bool = False,
|
| 338 |
+
seed: int = 1,
|
| 339 |
+
width: int = 1024,
|
| 340 |
+
height: int = 1024,
|
| 341 |
+
guidance_scale: float = 3,
|
| 342 |
+
num_inference_steps: int = 25,
|
| 343 |
+
randomize_seed: bool = False,
|
| 344 |
+
use_resolution_binning: bool = True,
|
| 345 |
+
num_images: int = 1,
|
| 346 |
+
progress=gr.Progress(track_tqdm=True),
|
| 347 |
+
):
|
| 348 |
+
global models
|
| 349 |
+
pipe = models[model_choice]
|
| 350 |
+
|
| 351 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 352 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 353 |
+
|
| 354 |
+
options = {
|
| 355 |
+
"prompt": [prompt] * num_images,
|
| 356 |
+
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
| 357 |
+
"width": width,
|
| 358 |
+
"height": height,
|
| 359 |
+
"guidance_scale": guidance_scale,
|
| 360 |
+
"num_inference_steps": num_inference_steps,
|
| 361 |
+
"generator": generator,
|
| 362 |
+
"output_type": "pil",
|
| 363 |
+
}
|
| 364 |
+
|
| 365 |
+
if use_resolution_binning:
|
| 366 |
+
options["use_resolution_binning"] = True
|
| 367 |
+
|
| 368 |
+
images = []
|
| 369 |
+
for i in range(0, num_images, BATCH_SIZE):
|
| 370 |
+
batch_options = options.copy()
|
| 371 |
+
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
| 372 |
+
if "negative_prompt" in batch_options:
|
| 373 |
+
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
| 374 |
+
images.extend(pipe(**batch_options).images)
|
| 375 |
+
|
| 376 |
+
image_paths = [save_image(img) for img in images]
|
| 377 |
+
return image_paths, seed
|
| 378 |
+
|
| 379 |
+
#def load_predefined_images():
|
| 380 |
+
# predefined_images = [
|
| 381 |
+
# "assets/1.png",
|
| 382 |
+
# "assets/2.png",
|
| 383 |
+
# "assets/3.png",
|
| 384 |
+
# "assets/4.png",
|
| 385 |
+
# "assets/5.png",
|
| 386 |
+
# "assets/6.png",
|
| 387 |
+
# "assets/7.png",
|
| 388 |
+
# "assets/8.png",
|
| 389 |
+
# "assets/9.png",
|
| 390 |
+
# "assets/10.png",
|
| 391 |
+
# "assets/11.png",
|
| 392 |
+
# "assets/12.png",
|
| 393 |
+
# ]
|
| 394 |
+
# return predefined_images
|
| 395 |
+
|
| 396 |
+
with gr.Blocks(css=css) as demo:
|
| 397 |
+
gr.Markdown(DESCRIPTIONx)
|
| 398 |
+
with gr.Row():
|
| 399 |
+
prompt = gr.Text(
|
| 400 |
+
label="Prompt",
|
| 401 |
+
show_label=False,
|
| 402 |
+
max_lines=1,
|
| 403 |
+
placeholder="Enter your prompt",
|
| 404 |
+
value="Chocolate dripping from a donut against a yellow background, 8k",
|
| 405 |
+
container=False,
|
| 406 |
+
)
|
| 407 |
+
run_button = gr.Button("Run⚡", scale=0)
|
| 408 |
+
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
| 409 |
+
|
| 410 |
+
with gr.Row():
|
| 411 |
+
model_choice = gr.Dropdown(
|
| 412 |
+
label="Model Selection",
|
| 413 |
+
choices=list(MODEL_OPTIONS.keys()),
|
| 414 |
+
value="Lightning"
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
with gr.Accordion("Advanced options", open=True, visible=False):
|
| 418 |
+
num_images = gr.Slider(
|
| 419 |
+
label="Number of Images",
|
| 420 |
+
minimum=1,
|
| 421 |
+
maximum=1,
|
| 422 |
+
step=1,
|
| 423 |
+
value=1,
|
| 424 |
+
)
|
| 425 |
+
with gr.Row():
|
| 426 |
+
with gr.Column(scale=1):
|
| 427 |
+
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
| 428 |
+
negative_prompt = gr.Text(
|
| 429 |
+
label="Negative prompt",
|
| 430 |
+
max_lines=5,
|
| 431 |
+
lines=4,
|
| 432 |
+
placeholder="Enter a negative prompt",
|
| 433 |
+
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
| 434 |
+
visible=True,
|
| 435 |
+
)
|
| 436 |
+
seed = gr.Slider(
|
| 437 |
+
label="Seed",
|
| 438 |
+
minimum=0,
|
| 439 |
+
maximum=MAX_SEED,
|
| 440 |
+
step=1,
|
| 441 |
+
value=0,
|
| 442 |
+
)
|
| 443 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 444 |
+
with gr.Row():
|
| 445 |
+
width = gr.Slider(
|
| 446 |
+
label="Width",
|
| 447 |
+
minimum=512,
|
| 448 |
+
maximum=MAX_IMAGE_SIZE,
|
| 449 |
+
step=64,
|
| 450 |
+
value=1024,
|
| 451 |
+
)
|
| 452 |
+
height = gr.Slider(
|
| 453 |
+
label="Height",
|
| 454 |
+
minimum=512,
|
| 455 |
+
maximum=MAX_IMAGE_SIZE,
|
| 456 |
+
step=64,
|
| 457 |
+
value=1024,
|
| 458 |
+
)
|
| 459 |
+
with gr.Row():
|
| 460 |
+
guidance_scale = gr.Slider(
|
| 461 |
+
label="Guidance Scale",
|
| 462 |
+
minimum=0.1,
|
| 463 |
+
maximum=6,
|
| 464 |
+
step=0.1,
|
| 465 |
+
value=3.0,
|
| 466 |
+
)
|
| 467 |
+
num_inference_steps = gr.Slider(
|
| 468 |
+
label="Number of inference steps",
|
| 469 |
+
minimum=1,
|
| 470 |
+
maximum=35,
|
| 471 |
+
step=1,
|
| 472 |
+
value=20,
|
| 473 |
+
)
|
| 474 |
+
|
| 475 |
+
gr.Examples(
|
| 476 |
+
examples=examples,
|
| 477 |
+
inputs=prompt,
|
| 478 |
+
cache_examples=False
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
+
use_negative_prompt.change(
|
| 482 |
+
fn=lambda x: gr.update(visible=x),
|
| 483 |
+
inputs=use_negative_prompt,
|
| 484 |
+
outputs=negative_prompt,
|
| 485 |
+
api_name=False,
|
| 486 |
+
)
|
| 487 |
+
|
| 488 |
+
gr.on(
|
| 489 |
+
triggers=[
|
| 490 |
+
prompt.submit,
|
| 491 |
+
negative_prompt.submit,
|
| 492 |
+
run_button.click,
|
| 493 |
+
],
|
| 494 |
+
fn=generate,
|
| 495 |
+
inputs=[
|
| 496 |
+
model_choice,
|
| 497 |
+
prompt,
|
| 498 |
+
negative_prompt,
|
| 499 |
+
use_negative_prompt,
|
| 500 |
+
seed,
|
| 501 |
+
width,
|
| 502 |
+
height,
|
| 503 |
+
guidance_scale,
|
| 504 |
+
num_inference_steps,
|
| 505 |
+
randomize_seed,
|
| 506 |
+
num_images
|
| 507 |
+
],
|
| 508 |
+
outputs=[result, seed],
|
| 509 |
+
api_name="run",
|
| 510 |
+
)
|
| 511 |
+
# with gr.Column(scale=3):
|
| 512 |
+
# gr.Markdown("### Image Gallery")
|
| 513 |
+
# predefined_gallery = gr.Gallery(label="Image Gallery", columns=4, show_label=False, value=load_predefined_images())
|
| 514 |
+
if __name__ == "__main__":
|
| 515 |
+
demo.queue(max_size=40).launch(show_api=False)
|
| 516 |
+
|
| 517 |
if __name__ == "__main__":
|
| 518 |
demo.queue(max_size=40).launch(show_api=False)
|