Spaces:
Sleeping
Sleeping
| #!/usr/bin/env python | |
| import os | |
| import random | |
| import uuid | |
| import gradio as gr | |
| import numpy as np | |
| from PIL import Image | |
| import spaces | |
| import torch | |
| from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
| DESCRIPTIONx = """ | |
| ## TEXT-2-IMG SDXL | |
| """ | |
| css = ''' | |
| .gradio-container{max-width: 690px !important} | |
| h1{text-align:center} | |
| footer { | |
| visibility: hidden | |
| } | |
| ''' | |
| js_func = """ | |
| function refresh() { | |
| const url = new URL(window.location); | |
| if (url.searchParams.get('__theme') !== 'dark') { | |
| url.searchParams.set('__theme', 'dark'); | |
| window.location.href = url.href; | |
| } | |
| } | |
| """ | |
| examples = [ | |
| "3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)", | |
| "Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic oil --ar 2:3 --q 2 --s 750 --v 5 --ar 2:3 --q 2 --s 750 --v 5", | |
| "Illustration of A starry night camp in the mountains. Low-angle view, Minimal background, Geometric shapes theme, Pottery, Split-complementary colors, Bicolored light, UHD", | |
| "Man in brown leather jacket posing for camera, in the style of sleek and stylized, clockpunk, subtle shades, exacting precision, ferrania p30 --ar 67:101 --v 5", | |
| "Commercial photography, giant burger, white lighting, studio light, 8k octane rendering, high resolution photography, insanely detailed, fine details, on white isolated plain, 8k, commercial photography, stock photo, professional color grading, --v 4 --ar 9:16 " | |
| ] | |
| MODEL_OPTIONS = { | |
| "Hyper Realism : V4.0_Lightning": "SG161222/RealVisXL_V4.0_Lightning", | |
| "Deep Realism : RealVisv4_XL": "SG161222/RealVisXL_V4.0", | |
| } | |
| MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) | |
| USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" | |
| ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" | |
| BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| def load_and_prepare_model(model_id): | |
| pipe = StableDiffusionXLPipeline.from_pretrained( | |
| model_id, | |
| torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
| use_safetensors=True, | |
| add_watermarker=False, | |
| ).to(device) | |
| pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
| if USE_TORCH_COMPILE: | |
| pipe.compile() | |
| if ENABLE_CPU_OFFLOAD: | |
| pipe.enable_model_cpu_offload() | |
| return pipe | |
| # Preload and compile both models | |
| models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()} | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def save_image(img): | |
| unique_name = str(uuid.uuid4()) + ".png" | |
| img.save(unique_name) | |
| return unique_name | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| def generate( | |
| model_choice: str, | |
| prompt: str, | |
| negative_prompt: str = "", | |
| use_negative_prompt: bool = False, | |
| seed: int = 1, | |
| width: int = 1024, | |
| height: int = 1024, | |
| guidance_scale: float = 3, | |
| num_inference_steps: int = 25, | |
| randomize_seed: bool = False, | |
| use_resolution_binning: bool = True, | |
| num_images: int = 1, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| global models | |
| pipe = models[model_choice] | |
| seed = int(randomize_seed_fn(seed, randomize_seed)) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| options = { | |
| "prompt": [prompt] * num_images, | |
| "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None, | |
| "width": width, | |
| "height": height, | |
| "guidance_scale": guidance_scale, | |
| "num_inference_steps": num_inference_steps, | |
| "generator": generator, | |
| "output_type": "pil", | |
| } | |
| if use_resolution_binning: | |
| options["use_resolution_binning"] = True | |
| images = [] | |
| for i in range(0, num_images, BATCH_SIZE): | |
| batch_options = options.copy() | |
| batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE] | |
| if "negative_prompt" in batch_options: | |
| batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE] | |
| images.extend(pipe(**batch_options).images) | |
| image_paths = [save_image(img) for img in images] | |
| return image_paths, seed | |
| def load_predefined_images(): | |
| predefined_images = [ | |
| "assets/1.png", | |
| "assets/2.png", | |
| "assets/3.png", | |
| "assets/4.png", | |
| "assets/5.png", | |
| "assets/6.png", | |
| "assets/7.png", | |
| "assets/8.png", | |
| "assets/9.png", | |
| "assets/10.png", | |
| "assets/11.png", | |
| "assets/12.png", | |
| ] | |
| return predefined_images | |
| with gr.Blocks(css=css, theme="bethecloud/storj_theme", js=js_func) as demo: | |
| gr.Markdown(DESCRIPTIONx) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run⚡", scale=0) | |
| result = gr.Gallery(label="Result", columns=1, show_label=False) | |
| with gr.Row(): | |
| model_choice = gr.Dropdown( | |
| label="Model Selection", | |
| choices=list(MODEL_OPTIONS.keys()), | |
| value="Hyper Realism : V4.0_Lightning" | |
| ) | |
| with gr.Accordion("Advanced options", open=True): | |
| num_images = gr.Slider( | |
| label="Number of Images", | |
| minimum=1, | |
| maximum=1, | |
| step=1, | |
| value=1, | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=5, | |
| lines=4, | |
| placeholder="Enter a negative prompt", | |
| value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", | |
| visible=True, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=512, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=64, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=512, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=64, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=0.1, | |
| maximum=6, | |
| step=0.1, | |
| value=3.0, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=35, | |
| step=1, | |
| value=20, | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| inputs=prompt, | |
| cache_examples=False | |
| ) | |
| use_negative_prompt.change( | |
| fn=lambda x: gr.update(visible=x), | |
| inputs=use_negative_prompt, | |
| outputs=negative_prompt, | |
| api_name=False, | |
| ) | |
| gr.on( | |
| triggers=[ | |
| prompt.submit, | |
| negative_prompt.submit, | |
| run_button.click, | |
| ], | |
| fn=generate, | |
| inputs=[ | |
| model_choice, | |
| prompt, | |
| negative_prompt, | |
| use_negative_prompt, | |
| seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| randomize_seed, | |
| num_images | |
| ], | |
| outputs=[result, seed], | |
| api_name="run", | |
| ) | |
| with gr.Column(scale=3): | |
| gr.Markdown("### Image Gallery") | |
| predefined_gallery = gr.Gallery(label="Image Gallery", columns=4, show_label=False, value=load_predefined_images()) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=40).launch(show_api=False) |