Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,614 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import io
|
3 |
import re
|
@@ -5,7 +616,7 @@ from typing import List, Tuple, Dict
|
|
5 |
|
6 |
import torch
|
7 |
import gradio as gr
|
8 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
9 |
|
10 |
# --- NEW: docs ---
|
11 |
import docx
|
@@ -17,16 +628,13 @@ import fitz # PyMuPDF
|
|
17 |
from reportlab.lib.pagesizes import A4
|
18 |
from reportlab.lib.styles import getSampleStyleSheet
|
19 |
from reportlab.lib.enums import TA_JUSTIFY
|
20 |
-
from reportlab.platypus import SimpleDocTemplate, Paragraph as RLParagraph, Spacer
|
21 |
from reportlab.lib.units import cm
|
22 |
|
23 |
# ================= CONFIG =================
|
24 |
MODEL_REPO = "Toadoum/ngambay-fr-v1"
|
25 |
-
|
26 |
-
|
27 |
-
# Switch FR_CODE to "fra_Latn" only if your tokenizer truly has it.
|
28 |
-
FR_CODE = "fr_Latn" # Français (source)
|
29 |
-
NG_CODE = "sba_Latn" # Ngambay (cible)
|
30 |
|
31 |
# Inference
|
32 |
MAX_NEW_TOKENS = 256
|
@@ -34,125 +642,41 @@ TEMPERATURE = 0.0
|
|
34 |
NUM_BEAMS = 1
|
35 |
|
36 |
# Performance knobs
|
37 |
-
MAX_SRC_TOKENS = 420 # per chunk
|
38 |
-
|
39 |
-
|
40 |
-
# ================= Helpers =================
|
41 |
-
def auto_batch_size(default=BATCH_SIZE_DEFAULT):
|
42 |
-
if not torch.cuda.is_available():
|
43 |
-
return max(2, min(6, default)) # CPU
|
44 |
-
try:
|
45 |
-
free, total = torch.cuda.mem_get_info()
|
46 |
-
gb = free / (1024**3)
|
47 |
-
if gb < 2: return 2
|
48 |
-
if gb < 4: return 6
|
49 |
-
if gb < 8: return 10
|
50 |
-
return default
|
51 |
-
except Exception:
|
52 |
-
return default
|
53 |
-
|
54 |
-
BATCH_SIZE = auto_batch_size()
|
55 |
-
|
56 |
-
# -------- Load model & tokenizer (meta-safe) --------
|
57 |
-
USE_CUDA = torch.cuda.is_available()
|
58 |
-
|
59 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_REPO, trust_remote_code=True)
|
60 |
-
|
61 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(
|
62 |
-
MODEL_REPO,
|
63 |
-
device_map="auto" if USE_CUDA else None, # let Accelerate place weights if GPU
|
64 |
-
torch_dtype=torch.float16 if USE_CUDA else torch.float32,
|
65 |
-
low_cpu_mem_usage=False,
|
66 |
-
trust_remote_code=True,
|
67 |
-
)
|
68 |
|
69 |
-
#
|
70 |
-
|
71 |
-
if isinstance(x, torch.Tensor):
|
72 |
-
return int(x.item()) if x.numel() == 1 else [int(v) for v in x.tolist()]
|
73 |
-
if isinstance(x, (list, tuple)):
|
74 |
-
return [int(v) for v in x]
|
75 |
-
return int(x) if x is not None else None
|
76 |
-
|
77 |
-
# Safeguard pad token
|
78 |
-
if tokenizer.pad_token is None and tokenizer.eos_token is not None:
|
79 |
-
tokenizer.pad_token = tokenizer.eos_token
|
80 |
-
elif tokenizer.pad_token is None:
|
81 |
-
tokenizer.add_special_tokens({"pad_token": "<pad>"})
|
82 |
-
model.resize_token_embeddings(len(tokenizer))
|
83 |
-
|
84 |
-
# Normalize generation config + mirror on model.config
|
85 |
-
gc = model.generation_config
|
86 |
-
for attr in ["pad_token_id", "eos_token_id", "bos_token_id", "decoder_start_token_id"]:
|
87 |
-
tok_val = getattr(tokenizer, attr, None)
|
88 |
-
cfg_val = getattr(gc, attr, None)
|
89 |
-
val = tok_val if tok_val is not None else cfg_val
|
90 |
-
if val is not None:
|
91 |
-
setattr(gc, attr, _to_int_or_list(val))
|
92 |
-
# mirror on model.config
|
93 |
-
val2 = getattr(model.generation_config, attr, None)
|
94 |
-
if val2 is not None:
|
95 |
-
setattr(model.config, attr, _to_int_or_list(val2))
|
96 |
-
|
97 |
-
# ================= Low-level NLLB-style generation =================
|
98 |
-
def _forced_bos_id(lang_code: str):
|
99 |
-
# Try common mappings first
|
100 |
-
if hasattr(tokenizer, "lang_code_to_id") and isinstance(tokenizer.lang_code_to_id, dict):
|
101 |
-
if lang_code in tokenizer.lang_code_to_id:
|
102 |
-
return int(tokenizer.lang_code_to_id[lang_code])
|
103 |
-
# Fallback: treat lang code as a token
|
104 |
-
try:
|
105 |
-
tok_id = tokenizer.convert_tokens_to_ids(lang_code)
|
106 |
-
if isinstance(tok_id, int) and tok_id != tokenizer.unk_token_id:
|
107 |
-
return tok_id
|
108 |
-
except Exception:
|
109 |
-
pass
|
110 |
-
# Final fallback: keep whatever the model already has
|
111 |
-
return model.generation_config.forced_bos_token_id
|
112 |
-
|
113 |
-
def _encode(texts: List[str], src_lang: str):
|
114 |
-
# NLLB/M2M-style: set source lang on tokenizer if supported
|
115 |
-
if hasattr(tokenizer, "src_lang"):
|
116 |
-
tokenizer.src_lang = src_lang
|
117 |
-
return tokenizer(
|
118 |
-
texts,
|
119 |
-
return_tensors="pt",
|
120 |
-
padding=True,
|
121 |
-
truncation=True,
|
122 |
-
add_special_tokens=True,
|
123 |
-
)
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
inputs = _encode(texts, src_lang)
|
129 |
-
|
130 |
-
# NOTE: Do NOT move inputs; with device_map="auto" the hooks handle it.
|
131 |
-
# Keep tensors on CPU; accelerate offloads as needed.
|
132 |
-
|
133 |
-
forced_bos = _forced_bos_id(tgt_lang)
|
134 |
-
gen_kwargs = dict(
|
135 |
-
max_new_tokens=MAX_NEW_TOKENS,
|
136 |
-
do_sample=False,
|
137 |
-
num_beams=NUM_BEAMS,
|
138 |
-
eos_token_id=model.generation_config.eos_token_id,
|
139 |
-
pad_token_id=model.generation_config.pad_token_id,
|
140 |
-
forced_bos_token_id=forced_bos,
|
141 |
-
)
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
146 |
|
147 |
-
#
|
148 |
def translate_text_simple(text: str) -> str:
|
149 |
if not text or not text.strip():
|
150 |
return ""
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
-
#
|
154 |
def tokenize_len(s: str) -> int:
|
155 |
-
return tokenizer(s, add_special_tokens=False
|
156 |
|
157 |
def chunk_text_for_translation(text: str, max_src_tokens: int = MAX_SRC_TOKENS) -> List[str]:
|
158 |
"""Split text by sentence-ish boundaries and merge under token limit."""
|
@@ -179,37 +703,35 @@ def chunk_text_for_translation(text: str, max_src_tokens: int = MAX_SRC_TOKENS)
|
|
179 |
chunks.append(current.strip())
|
180 |
return chunks
|
181 |
|
182 |
-
#
|
183 |
TRANSLATION_CACHE: Dict[str, str] = {}
|
184 |
-
CACHE_CAP = 20000
|
185 |
-
|
186 |
-
def _cache_set(k: str, v: str):
|
187 |
-
if len(TRANSLATION_CACHE) >= CACHE_CAP:
|
188 |
-
# drop ~5% oldest items
|
189 |
-
for i, key in enumerate(list(TRANSLATION_CACHE.keys())):
|
190 |
-
del TRANSLATION_CACHE[key]
|
191 |
-
if i > CACHE_CAP // 20:
|
192 |
-
break
|
193 |
-
TRANSLATION_CACHE[k] = v
|
194 |
|
195 |
def translate_chunks_list(chunks: List[str], batch_size: int = BATCH_SIZE) -> List[str]:
|
196 |
"""
|
197 |
Translate a list of chunks with de-dup + batching.
|
198 |
Returns translations in the same order as input.
|
199 |
"""
|
|
|
200 |
norm_chunks = [c.strip() for c in chunks]
|
201 |
-
|
202 |
-
seen = set()
|
203 |
for c in norm_chunks:
|
204 |
-
if c and c not in TRANSLATION_CACHE
|
205 |
-
|
206 |
-
unique_to_translate.append(c)
|
207 |
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
return [TRANSLATION_CACHE.get(c, "") for c in norm_chunks]
|
215 |
|
@@ -219,15 +741,15 @@ def translate_long_text(text: str) -> str:
|
|
219 |
if not chs:
|
220 |
return ""
|
221 |
trs = translate_chunks_list(chs)
|
|
|
222 |
return " ".join(trs).strip()
|
223 |
|
224 |
-
#
|
225 |
def is_heading(par: Paragraph) -> Tuple[bool, int]:
|
226 |
-
|
227 |
-
|
228 |
-
if any(c in name for c in ["heading", "title", "titre"]):
|
229 |
for lvl in range(1, 10):
|
230 |
-
if str(lvl) in
|
231 |
return True, lvl
|
232 |
return True, 1
|
233 |
return False, 0
|
@@ -253,6 +775,7 @@ def translate_docx_bytes(file_bytes: bytes) -> bytes:
|
|
253 |
|
254 |
is_head, lvl = is_heading(par)
|
255 |
if is_head:
|
|
|
256 |
work.append({"kind": "heading", "level": min(max(lvl, 1), 9), "range": (len(all_chunks), len(all_chunks)+1)})
|
257 |
all_chunks.append(txt.strip())
|
258 |
else:
|
@@ -265,11 +788,11 @@ def translate_docx_bytes(file_bytes: bytes) -> bytes:
|
|
265 |
work.append({"kind": "blank"})
|
266 |
|
267 |
# tables
|
268 |
-
for table in src_doc.tables:
|
269 |
t_desc = {"kind": "table", "rows": len(table.rows), "cols": len(table.columns), "cells": []}
|
270 |
-
for row in table.rows:
|
271 |
row_cells = []
|
272 |
-
for cell in row.cells:
|
273 |
cell_text = "\n".join([p.text for p in cell.paragraphs]).strip()
|
274 |
if cell_text:
|
275 |
chs = chunk_text_for_translation(cell_text)
|
@@ -285,17 +808,23 @@ def translate_docx_bytes(file_bytes: bytes) -> bytes:
|
|
285 |
work.append(t_desc)
|
286 |
|
287 |
# 2) Translate all chunks at once (de-dup + batching)
|
288 |
-
|
|
|
|
|
|
|
289 |
|
290 |
# 3) Rebuild new document with justified paragraphs
|
291 |
new_doc = docx.Document()
|
|
|
292 |
|
|
|
293 |
def join_range(rng: Tuple[int, int]) -> str:
|
294 |
if rng is None:
|
295 |
return ""
|
296 |
s, e = rng
|
297 |
return " ".join(translated_all[s:e]).strip()
|
298 |
|
|
|
299 |
for item in work:
|
300 |
if item["kind"] == "blank":
|
301 |
new_doc.add_paragraph("")
|
@@ -321,7 +850,7 @@ def translate_docx_bytes(file_bytes: bytes) -> bytes:
|
|
321 |
new_doc.save(out)
|
322 |
return out.getvalue()
|
323 |
|
324 |
-
#
|
325 |
def extract_pdf_text_blocks(pdf_bytes: bytes) -> List[List[str]]:
|
326 |
"""
|
327 |
Returns list of pages, each a list of block texts (visual order).
|
@@ -342,8 +871,7 @@ def extract_pdf_text_blocks(pdf_bytes: bytes) -> List[List[str]]:
|
|
342 |
|
343 |
def build_pdf_from_blocks(translated_pages: List[List[str]]) -> bytes:
|
344 |
"""
|
345 |
-
Build a clean paginated PDF with justified paragraphs.
|
346 |
-
Keeps one translated page per original page via PageBreak.
|
347 |
"""
|
348 |
buf = io.BytesIO()
|
349 |
doc = SimpleDocTemplate(
|
@@ -358,9 +886,11 @@ def build_pdf_from_blocks(translated_pages: List[List[str]]) -> bytes:
|
|
358 |
body.leading = 14
|
359 |
|
360 |
story = []
|
361 |
-
|
362 |
-
|
363 |
-
|
|
|
|
|
364 |
for blk in blocks:
|
365 |
story.append(RLParagraph(blk.replace("\n", "<br/>"), body))
|
366 |
story.append(Spacer(1, 0.35*cm))
|
@@ -370,7 +900,7 @@ def build_pdf_from_blocks(translated_pages: List[List[str]]) -> bytes:
|
|
370 |
|
371 |
def translate_pdf_bytes(file_bytes: bytes) -> bytes:
|
372 |
"""
|
373 |
-
Read PDF → collect ALL block chunks across pages → single batched translation → rebuild PDF.
|
374 |
"""
|
375 |
pages_blocks = extract_pdf_text_blocks(file_bytes)
|
376 |
|
@@ -406,7 +936,7 @@ def translate_pdf_bytes(file_bytes: bytes) -> bytes:
|
|
406 |
|
407 |
return build_pdf_from_blocks(translated_pages)
|
408 |
|
409 |
-
#
|
410 |
def translate_document(file_obj):
|
411 |
"""
|
412 |
Accepts gr.File input (NamedString, filepath str, or dict with binary).
|
@@ -443,6 +973,9 @@ def translate_document(file_obj):
|
|
443 |
if data is None:
|
444 |
return None, "Impossible de lire le fichier sélectionné."
|
445 |
|
|
|
|
|
|
|
446 |
if name.lower().endswith(".docx"):
|
447 |
out_bytes = translate_docx_bytes(data)
|
448 |
out_path = "translated_ngambay.docx"
|
@@ -475,9 +1008,9 @@ theme = gr.themes.Soft(
|
|
475 |
|
476 |
CUSTOM_CSS = """
|
477 |
.gradio-container {max-width: 980px !important;}
|
478 |
-
.header-card {
|
479 |
-
background: linear-gradient(135deg, #4f46e5 0%, #7c3aed 100%);
|
480 |
-
color: white; padding: 22px; border-radius: 18px;
|
481 |
box-shadow: 0 10px 30px rgba(79,70,229,.25);
|
482 |
transition: transform .2s ease;
|
483 |
}
|
@@ -485,9 +1018,9 @@ CUSTOM_CSS = """
|
|
485 |
.header-title { font-size: 26px; font-weight: 800; margin: 0 0 6px 0; letter-spacing: .2px; }
|
486 |
.header-sub { opacity: .98; font-size: 14px; }
|
487 |
.brand { display:flex; align-items:center; gap:10px; justify-content:space-between; flex-wrap:wrap; }
|
488 |
-
.badge {
|
489 |
-
display:inline-block; background: rgba(255,255,255,.18);
|
490 |
-
padding: 4px 10px; border-radius: 999px; font-size: 12px;
|
491 |
border: 1px solid rgba(255,255,255,.25);
|
492 |
}
|
493 |
.footer-note {
|
@@ -561,7 +1094,7 @@ with gr.Blocks(
|
|
561 |
interactive=False,
|
562 |
show_copy_button=True
|
563 |
)
|
564 |
-
gr.Markdown('<div class="footer-note">Astuce : collez un paragraphe complet pour un meilleur contexte
|
565 |
|
566 |
# -------- Tab 2: Documents --------
|
567 |
with gr.Tab("Traduction de document (.docx / .pdf)"):
|
@@ -575,13 +1108,9 @@ with gr.Blocks(
|
|
575 |
run_doc = gr.Button("Traduire le document", variant="primary")
|
576 |
with gr.Column(scale=5):
|
577 |
doc_out = gr.File(label="Fichier traduit (télécharger)")
|
578 |
-
doc_status = gr.Markdown(
|
579 |
-
|
580 |
-
def _wrap_translate_document(f):
|
581 |
-
path, msg = translate_document(f)
|
582 |
-
return path, gr.update(value=msg, visible=True)
|
583 |
|
584 |
-
run_doc.click(
|
585 |
|
586 |
# Contribution banner
|
587 |
gr.HTML(
|
@@ -605,5 +1134,4 @@ with gr.Blocks(
|
|
605 |
clear_btn.click(lambda: ("", ""), outputs=[src, tgt])
|
606 |
|
607 |
if __name__ == "__main__":
|
608 |
-
|
609 |
-
demo.queue(default_concurrency_limit=4).launch(share=True)
|
|
|
1 |
+
# import os
|
2 |
+
# import io
|
3 |
+
# import re
|
4 |
+
# from typing import List, Tuple, Dict
|
5 |
+
|
6 |
+
# import torch
|
7 |
+
# import gradio as gr
|
8 |
+
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
9 |
+
|
10 |
+
# # --- NEW: docs ---
|
11 |
+
# import docx
|
12 |
+
# from docx.enum.text import WD_ALIGN_PARAGRAPH
|
13 |
+
# from docx.text.paragraph import Paragraph
|
14 |
+
|
15 |
+
# # PDF read & write
|
16 |
+
# import fitz # PyMuPDF
|
17 |
+
# from reportlab.lib.pagesizes import A4
|
18 |
+
# from reportlab.lib.styles import getSampleStyleSheet
|
19 |
+
# from reportlab.lib.enums import TA_JUSTIFY
|
20 |
+
# from reportlab.platypus import SimpleDocTemplate, Paragraph as RLParagraph, Spacer, PageBreak
|
21 |
+
# from reportlab.lib.units import cm
|
22 |
+
|
23 |
+
# # ================= CONFIG =================
|
24 |
+
# MODEL_REPO = "Toadoum/ngambay-fr-v1"
|
25 |
+
|
26 |
+
# # Use the lang tokens that actually exist in your tokenizer.
|
27 |
+
# # Switch FR_CODE to "fra_Latn" only if your tokenizer truly has it.
|
28 |
+
# FR_CODE = "sba_Latn" # Français (source)
|
29 |
+
# NG_CODE = "fr_Latn" # Ngambay (cible)
|
30 |
+
|
31 |
+
# # Inference
|
32 |
+
# MAX_NEW_TOKENS = 256
|
33 |
+
# TEMPERATURE = 0.0
|
34 |
+
# NUM_BEAMS = 1
|
35 |
+
|
36 |
+
# # Performance knobs
|
37 |
+
# MAX_SRC_TOKENS = 420 # per chunk
|
38 |
+
# BATCH_SIZE_DEFAULT = 12 # base batch size (autoscaled below)
|
39 |
+
|
40 |
+
# # ================= Helpers =================
|
41 |
+
# def auto_batch_size(default=BATCH_SIZE_DEFAULT):
|
42 |
+
# if not torch.cuda.is_available():
|
43 |
+
# return max(2, min(6, default)) # CPU
|
44 |
+
# try:
|
45 |
+
# free, total = torch.cuda.mem_get_info()
|
46 |
+
# gb = free / (1024**3)
|
47 |
+
# if gb < 2: return 2
|
48 |
+
# if gb < 4: return 6
|
49 |
+
# if gb < 8: return 10
|
50 |
+
# return default
|
51 |
+
# except Exception:
|
52 |
+
# return default
|
53 |
+
|
54 |
+
# BATCH_SIZE = auto_batch_size()
|
55 |
+
|
56 |
+
# # -------- Load model & tokenizer (meta-safe) --------
|
57 |
+
# USE_CUDA = torch.cuda.is_available()
|
58 |
+
|
59 |
+
# tokenizer = AutoTokenizer.from_pretrained(MODEL_REPO, trust_remote_code=True)
|
60 |
+
|
61 |
+
# model = AutoModelForSeq2SeqLM.from_pretrained(
|
62 |
+
# MODEL_REPO,
|
63 |
+
# device_map="auto" if USE_CUDA else None, # let Accelerate place weights if GPU
|
64 |
+
# torch_dtype=torch.float16 if USE_CUDA else torch.float32,
|
65 |
+
# low_cpu_mem_usage=False,
|
66 |
+
# trust_remote_code=True,
|
67 |
+
# )
|
68 |
+
|
69 |
+
# # --- Ensure pad/eos/bos exist and are INTS (not tensors) ---
|
70 |
+
# def _to_int_or_list(x):
|
71 |
+
# if isinstance(x, torch.Tensor):
|
72 |
+
# return int(x.item()) if x.numel() == 1 else [int(v) for v in x.tolist()]
|
73 |
+
# if isinstance(x, (list, tuple)):
|
74 |
+
# return [int(v) for v in x]
|
75 |
+
# return int(x) if x is not None else None
|
76 |
+
|
77 |
+
# # Safeguard pad token
|
78 |
+
# if tokenizer.pad_token is None and tokenizer.eos_token is not None:
|
79 |
+
# tokenizer.pad_token = tokenizer.eos_token
|
80 |
+
# elif tokenizer.pad_token is None:
|
81 |
+
# tokenizer.add_special_tokens({"pad_token": "<pad>"})
|
82 |
+
# model.resize_token_embeddings(len(tokenizer))
|
83 |
+
|
84 |
+
# # Normalize generation config + mirror on model.config
|
85 |
+
# gc = model.generation_config
|
86 |
+
# for attr in ["pad_token_id", "eos_token_id", "bos_token_id", "decoder_start_token_id"]:
|
87 |
+
# tok_val = getattr(tokenizer, attr, None)
|
88 |
+
# cfg_val = getattr(gc, attr, None)
|
89 |
+
# val = tok_val if tok_val is not None else cfg_val
|
90 |
+
# if val is not None:
|
91 |
+
# setattr(gc, attr, _to_int_or_list(val))
|
92 |
+
# # mirror on model.config
|
93 |
+
# val2 = getattr(model.generation_config, attr, None)
|
94 |
+
# if val2 is not None:
|
95 |
+
# setattr(model.config, attr, _to_int_or_list(val2))
|
96 |
+
|
97 |
+
# # ================= Low-level NLLB-style generation =================
|
98 |
+
# def _forced_bos_id(lang_code: str):
|
99 |
+
# # Try common mappings first
|
100 |
+
# if hasattr(tokenizer, "lang_code_to_id") and isinstance(tokenizer.lang_code_to_id, dict):
|
101 |
+
# if lang_code in tokenizer.lang_code_to_id:
|
102 |
+
# return int(tokenizer.lang_code_to_id[lang_code])
|
103 |
+
# # Fallback: treat lang code as a token
|
104 |
+
# try:
|
105 |
+
# tok_id = tokenizer.convert_tokens_to_ids(lang_code)
|
106 |
+
# if isinstance(tok_id, int) and tok_id != tokenizer.unk_token_id:
|
107 |
+
# return tok_id
|
108 |
+
# except Exception:
|
109 |
+
# pass
|
110 |
+
# # Final fallback: keep whatever the model already has
|
111 |
+
# return model.generation_config.forced_bos_token_id
|
112 |
+
|
113 |
+
# def _encode(texts: List[str], src_lang: str):
|
114 |
+
# # NLLB/M2M-style: set source lang on tokenizer if supported
|
115 |
+
# if hasattr(tokenizer, "src_lang"):
|
116 |
+
# tokenizer.src_lang = src_lang
|
117 |
+
# return tokenizer(
|
118 |
+
# texts,
|
119 |
+
# return_tensors="pt",
|
120 |
+
# padding=True,
|
121 |
+
# truncation=True,
|
122 |
+
# add_special_tokens=True,
|
123 |
+
# )
|
124 |
+
|
125 |
+
# def _generate_batch(texts: List[str], src_lang: str, tgt_lang: str) -> List[str]:
|
126 |
+
# if not texts:
|
127 |
+
# return []
|
128 |
+
# inputs = _encode(texts, src_lang)
|
129 |
+
|
130 |
+
# # NOTE: Do NOT move inputs; with device_map="auto" the hooks handle it.
|
131 |
+
# # Keep tensors on CPU; accelerate offloads as needed.
|
132 |
+
|
133 |
+
# forced_bos = _forced_bos_id(tgt_lang)
|
134 |
+
# gen_kwargs = dict(
|
135 |
+
# max_new_tokens=MAX_NEW_TOKENS,
|
136 |
+
# do_sample=False,
|
137 |
+
# num_beams=NUM_BEAMS,
|
138 |
+
# eos_token_id=model.generation_config.eos_token_id,
|
139 |
+
# pad_token_id=model.generation_config.pad_token_id,
|
140 |
+
# forced_bos_token_id=forced_bos,
|
141 |
+
# )
|
142 |
+
|
143 |
+
# with torch.no_grad():
|
144 |
+
# output_ids = model.generate(**inputs, **gen_kwargs)
|
145 |
+
# return tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
146 |
+
|
147 |
+
# # ================= Simple text translation =================
|
148 |
+
# def translate_text_simple(text: str) -> str:
|
149 |
+
# if not text or not text.strip():
|
150 |
+
# return ""
|
151 |
+
# return _generate_batch([text], FR_CODE, NG_CODE)[0]
|
152 |
+
|
153 |
+
# # ================= Chunking + Batched Translation + Cache =================
|
154 |
+
# def tokenize_len(s: str) -> int:
|
155 |
+
# return tokenizer(s, add_special_tokens=False, return_length=True)["length"][0]
|
156 |
+
|
157 |
+
# def chunk_text_for_translation(text: str, max_src_tokens: int = MAX_SRC_TOKENS) -> List[str]:
|
158 |
+
# """Split text by sentence-ish boundaries and merge under token limit."""
|
159 |
+
# if not text.strip():
|
160 |
+
# return []
|
161 |
+
# parts = re.split(r'(\s*[\.\!\?…:;]\s+)', text)
|
162 |
+
# sentences = []
|
163 |
+
# for i in range(0, len(parts), 2):
|
164 |
+
# s = parts[i]
|
165 |
+
# p = parts[i+1] if i+1 < len(parts) else ""
|
166 |
+
# unit = (s + (p or "")).strip()
|
167 |
+
# if unit:
|
168 |
+
# sentences.append(unit)
|
169 |
+
|
170 |
+
# chunks, current = [], ""
|
171 |
+
# for sent in sentences:
|
172 |
+
# candidate = (current + " " + sent).strip() if current else sent
|
173 |
+
# if current and tokenize_len(candidate) > max_src_tokens:
|
174 |
+
# chunks.append(current.strip())
|
175 |
+
# current = sent
|
176 |
+
# else:
|
177 |
+
# current = candidate
|
178 |
+
# if current.strip():
|
179 |
+
# chunks.append(current.strip())
|
180 |
+
# return chunks
|
181 |
+
|
182 |
+
# # Small bounded cache (LRU-like using dict + cap)
|
183 |
+
# TRANSLATION_CACHE: Dict[str, str] = {}
|
184 |
+
# CACHE_CAP = 20000
|
185 |
+
|
186 |
+
# def _cache_set(k: str, v: str):
|
187 |
+
# if len(TRANSLATION_CACHE) >= CACHE_CAP:
|
188 |
+
# # drop ~5% oldest items
|
189 |
+
# for i, key in enumerate(list(TRANSLATION_CACHE.keys())):
|
190 |
+
# del TRANSLATION_CACHE[key]
|
191 |
+
# if i > CACHE_CAP // 20:
|
192 |
+
# break
|
193 |
+
# TRANSLATION_CACHE[k] = v
|
194 |
+
|
195 |
+
# def translate_chunks_list(chunks: List[str], batch_size: int = BATCH_SIZE) -> List[str]:
|
196 |
+
# """
|
197 |
+
# Translate a list of chunks with de-dup + batching.
|
198 |
+
# Returns translations in the same order as input.
|
199 |
+
# """
|
200 |
+
# norm_chunks = [c.strip() for c in chunks]
|
201 |
+
# unique_to_translate = []
|
202 |
+
# seen = set()
|
203 |
+
# for c in norm_chunks:
|
204 |
+
# if c and c not in TRANSLATION_CACHE and c not in seen:
|
205 |
+
# seen.add(c)
|
206 |
+
# unique_to_translate.append(c)
|
207 |
+
|
208 |
+
# for i in range(0, len(unique_to_translate), batch_size):
|
209 |
+
# batch = unique_to_translate[i:i + batch_size]
|
210 |
+
# outs = _generate_batch(batch, FR_CODE, NG_CODE)
|
211 |
+
# for src, o in zip(batch, outs):
|
212 |
+
# _cache_set(src, o)
|
213 |
+
|
214 |
+
# return [TRANSLATION_CACHE.get(c, "") for c in norm_chunks]
|
215 |
+
|
216 |
+
# def translate_long_text(text: str) -> str:
|
217 |
+
# """Chunk → batch translate → rejoin for one paragraph/block."""
|
218 |
+
# chs = chunk_text_for_translation(text)
|
219 |
+
# if not chs:
|
220 |
+
# return ""
|
221 |
+
# trs = translate_chunks_list(chs)
|
222 |
+
# return " ".join(trs).strip()
|
223 |
+
|
224 |
+
# # ================= DOCX helpers =================
|
225 |
+
# def is_heading(par: Paragraph) -> Tuple[bool, int]:
|
226 |
+
# # Works with English and French Word styles
|
227 |
+
# name = (par.style.name or "").lower()
|
228 |
+
# if any(c in name for c in ["heading", "title", "titre"]):
|
229 |
+
# for lvl in range(1, 10):
|
230 |
+
# if str(lvl) in name:
|
231 |
+
# return True, lvl
|
232 |
+
# return True, 1
|
233 |
+
# return False, 0
|
234 |
+
|
235 |
+
# def translate_docx_bytes(file_bytes: bytes) -> bytes:
|
236 |
+
# """
|
237 |
+
# Read .docx → collect ALL chunks (paras + table cells) → single batched translation → rebuild .docx.
|
238 |
+
# Paragraphs and table cell paragraphs are justified; headings kept as headings.
|
239 |
+
# """
|
240 |
+
# f = io.BytesIO(file_bytes)
|
241 |
+
# src_doc = docx.Document(f)
|
242 |
+
|
243 |
+
# # 1) Collect work units
|
244 |
+
# work = [] # list of dict entries describing items with ranges into all_chunks
|
245 |
+
# all_chunks: List[str] = []
|
246 |
+
|
247 |
+
# # paragraphs
|
248 |
+
# for par in src_doc.paragraphs:
|
249 |
+
# txt = par.text
|
250 |
+
# if not txt.strip():
|
251 |
+
# work.append({"kind": "blank"})
|
252 |
+
# continue
|
253 |
+
|
254 |
+
# is_head, lvl = is_heading(par)
|
255 |
+
# if is_head:
|
256 |
+
# work.append({"kind": "heading", "level": min(max(lvl, 1), 9), "range": (len(all_chunks), len(all_chunks)+1)})
|
257 |
+
# all_chunks.append(txt.strip())
|
258 |
+
# else:
|
259 |
+
# chs = chunk_text_for_translation(txt)
|
260 |
+
# if chs:
|
261 |
+
# start = len(all_chunks)
|
262 |
+
# all_chunks.extend(chs)
|
263 |
+
# work.append({"kind": "para", "range": (start, start+len(chs))})
|
264 |
+
# else:
|
265 |
+
# work.append({"kind": "blank"})
|
266 |
+
|
267 |
+
# # tables
|
268 |
+
# for table in src_doc.tables:
|
269 |
+
# t_desc = {"kind": "table", "rows": len(table.rows), "cols": len(table.columns), "cells": []}
|
270 |
+
# for row in table.rows:
|
271 |
+
# row_cells = []
|
272 |
+
# for cell in row.cells:
|
273 |
+
# cell_text = "\n".join([p.text for p in cell.paragraphs]).strip()
|
274 |
+
# if cell_text:
|
275 |
+
# chs = chunk_text_for_translation(cell_text)
|
276 |
+
# if chs:
|
277 |
+
# start = len(all_chunks)
|
278 |
+
# all_chunks.extend(chs)
|
279 |
+
# row_cells.append({"range": (start, start+len(chs))})
|
280 |
+
# else:
|
281 |
+
# row_cells.append({"range": None})
|
282 |
+
# else:
|
283 |
+
# row_cells.append({"range": None})
|
284 |
+
# t_desc["cells"].append(row_cells)
|
285 |
+
# work.append(t_desc)
|
286 |
+
|
287 |
+
# # 2) Translate all chunks at once (de-dup + batching)
|
288 |
+
# translated_all = translate_chunks_list(all_chunks) if all_chunks else []
|
289 |
+
|
290 |
+
# # 3) Rebuild new document with justified paragraphs
|
291 |
+
# new_doc = docx.Document()
|
292 |
+
|
293 |
+
# def join_range(rng: Tuple[int, int]) -> str:
|
294 |
+
# if rng is None:
|
295 |
+
# return ""
|
296 |
+
# s, e = rng
|
297 |
+
# return " ".join(translated_all[s:e]).strip()
|
298 |
+
|
299 |
+
# for item in work:
|
300 |
+
# if item["kind"] == "blank":
|
301 |
+
# new_doc.add_paragraph("")
|
302 |
+
# elif item["kind"] == "heading":
|
303 |
+
# text = join_range(item["range"])
|
304 |
+
# new_doc.add_heading(text, level=item["level"])
|
305 |
+
# elif item["kind"] == "para":
|
306 |
+
# text = join_range(item["range"])
|
307 |
+
# p = new_doc.add_paragraph(text)
|
308 |
+
# p.alignment = WD_ALIGN_PARAGRAPH.JUSTIFY
|
309 |
+
# elif item["kind"] == "table":
|
310 |
+
# tbl = new_doc.add_table(rows=item["rows"], cols=item["cols"])
|
311 |
+
# for r_idx in range(item["rows"]):
|
312 |
+
# for c_idx in range(item["cols"]):
|
313 |
+
# cell_info = item["cells"][r_idx][c_idx]
|
314 |
+
# txt = join_range(cell_info["range"])
|
315 |
+
# tgt_cell = tbl.cell(r_idx, c_idx)
|
316 |
+
# tgt_cell.text = txt
|
317 |
+
# for p in tgt_cell.paragraphs:
|
318 |
+
# p.alignment = WD_ALIGN_PARAGRAPH.JUSTIFY
|
319 |
+
|
320 |
+
# out = io.BytesIO()
|
321 |
+
# new_doc.save(out)
|
322 |
+
# return out.getvalue()
|
323 |
+
|
324 |
+
# # ================= PDF helpers =================
|
325 |
+
# def extract_pdf_text_blocks(pdf_bytes: bytes) -> List[List[str]]:
|
326 |
+
# """
|
327 |
+
# Returns list of pages, each a list of block texts (visual order).
|
328 |
+
# """
|
329 |
+
# pages_blocks: List[List[str]] = []
|
330 |
+
# doc = fitz.open(stream=pdf_bytes, filetype="pdf")
|
331 |
+
# for page in doc:
|
332 |
+
# blocks = page.get_text("blocks")
|
333 |
+
# blocks.sort(key=lambda b: (round(b[1], 1), round(b[0], 1)))
|
334 |
+
# page_texts = []
|
335 |
+
# for b in blocks:
|
336 |
+
# text = b[4].strip()
|
337 |
+
# if text:
|
338 |
+
# page_texts.append(text)
|
339 |
+
# pages_blocks.append(page_texts)
|
340 |
+
# doc.close()
|
341 |
+
# return pages_blocks
|
342 |
+
|
343 |
+
# def build_pdf_from_blocks(translated_pages: List[List[str]]) -> bytes:
|
344 |
+
# """
|
345 |
+
# Build a clean paginated PDF with justified paragraphs.
|
346 |
+
# Keeps one translated page per original page via PageBreak.
|
347 |
+
# """
|
348 |
+
# buf = io.BytesIO()
|
349 |
+
# doc = SimpleDocTemplate(
|
350 |
+
# buf, pagesize=A4,
|
351 |
+
# rightMargin=2*cm, leftMargin=2*cm,
|
352 |
+
# topMargin=2*cm, bottomMargin=2*cm
|
353 |
+
# )
|
354 |
+
|
355 |
+
# styles = getSampleStyleSheet()
|
356 |
+
# body = styles["BodyText"]
|
357 |
+
# body.alignment = TA_JUSTIFY
|
358 |
+
# body.leading = 14
|
359 |
+
|
360 |
+
# story = []
|
361 |
+
# for p_idx, blocks in enumerate(translated_pages):
|
362 |
+
# if p_idx > 0:
|
363 |
+
# story.append(PageBreak())
|
364 |
+
# for blk in blocks:
|
365 |
+
# story.append(RLParagraph(blk.replace("\n", "<br/>"), body))
|
366 |
+
# story.append(Spacer(1, 0.35*cm))
|
367 |
+
|
368 |
+
# doc.build(story)
|
369 |
+
# return buf.getvalue()
|
370 |
+
|
371 |
+
# def translate_pdf_bytes(file_bytes: bytes) -> bytes:
|
372 |
+
# """
|
373 |
+
# Read PDF → collect ALL block chunks across pages → single batched translation → rebuild PDF.
|
374 |
+
# """
|
375 |
+
# pages_blocks = extract_pdf_text_blocks(file_bytes)
|
376 |
+
|
377 |
+
# # 1) collect chunks for the entire PDF
|
378 |
+
# all_chunks: List[str] = []
|
379 |
+
# plan = [] # list of pages, each a list of ranges for blocks
|
380 |
+
# for blocks in pages_blocks:
|
381 |
+
# page_plan = []
|
382 |
+
# for blk in blocks:
|
383 |
+
# chs = chunk_text_for_translation(blk)
|
384 |
+
# if chs:
|
385 |
+
# start = len(all_chunks)
|
386 |
+
# all_chunks.extend(chs)
|
387 |
+
# page_plan.append((start, start + len(chs)))
|
388 |
+
# else:
|
389 |
+
# page_plan.append(None)
|
390 |
+
# plan.append(page_plan)
|
391 |
+
|
392 |
+
# # 2) translate all chunks at once
|
393 |
+
# translated_all = translate_chunks_list(all_chunks) if all_chunks else []
|
394 |
+
|
395 |
+
# # 3) reconstruct per block
|
396 |
+
# translated_pages: List[List[str]] = []
|
397 |
+
# for page_plan in plan:
|
398 |
+
# page_out = []
|
399 |
+
# for rng in page_plan:
|
400 |
+
# if rng is None:
|
401 |
+
# page_out.append("")
|
402 |
+
# else:
|
403 |
+
# s, e = rng
|
404 |
+
# page_out.append(" ".join(translated_all[s:e]).strip())
|
405 |
+
# translated_pages.append(page_out)
|
406 |
+
|
407 |
+
# return build_pdf_from_blocks(translated_pages)
|
408 |
+
|
409 |
+
# # ================= Gradio file handler =================
|
410 |
+
# def translate_document(file_obj):
|
411 |
+
# """
|
412 |
+
# Accepts gr.File input (NamedString, filepath str, or dict with binary).
|
413 |
+
# Returns (output_file_path, status_message).
|
414 |
+
# """
|
415 |
+
# if file_obj is None:
|
416 |
+
# return None, "Veuillez sélectionner un fichier .docx ou .pdf"
|
417 |
+
|
418 |
+
# try:
|
419 |
+
# name = "document"
|
420 |
+
# data = None
|
421 |
+
|
422 |
+
# # Case A: plain filepath string
|
423 |
+
# if isinstance(file_obj, str):
|
424 |
+
# name = os.path.basename(file_obj)
|
425 |
+
# with open(file_obj, "rb") as f:
|
426 |
+
# data = f.read()
|
427 |
+
|
428 |
+
# # Case B: Gradio NamedString with .name (orig name) and .value (temp path)
|
429 |
+
# elif hasattr(file_obj, "name") and hasattr(file_obj, "value"):
|
430 |
+
# name = os.path.basename(file_obj.name or "document")
|
431 |
+
# with open(file_obj.value, "rb") as f:
|
432 |
+
# data = f.read()
|
433 |
+
|
434 |
+
# # Case C: dict (type="binary")
|
435 |
+
# elif isinstance(file_obj, dict) and "name" in file_obj and "data" in file_obj:
|
436 |
+
# name = os.path.basename(file_obj["name"] or "document")
|
437 |
+
# d = file_obj["data"]
|
438 |
+
# data = d.read() if hasattr(d, "read") else d
|
439 |
+
|
440 |
+
# else:
|
441 |
+
# return None, "Type d'entrée fichier non supporté (filepath/binaire)."
|
442 |
+
|
443 |
+
# if data is None:
|
444 |
+
# return None, "Impossible de lire le fichier sélectionné."
|
445 |
+
|
446 |
+
# if name.lower().endswith(".docx"):
|
447 |
+
# out_bytes = translate_docx_bytes(data)
|
448 |
+
# out_path = "translated_ngambay.docx"
|
449 |
+
# with open(out_path, "wb") as f:
|
450 |
+
# f.write(out_bytes)
|
451 |
+
# return out_path, "✅ Traduction DOCX terminée (paragraphes justifiés)."
|
452 |
+
|
453 |
+
# elif name.lower().endswith(".pdf"):
|
454 |
+
# out_bytes = translate_pdf_bytes(data)
|
455 |
+
# out_path = "translated_ngambay.pdf"
|
456 |
+
# with open(out_path, "wb") as f:
|
457 |
+
# f.write(out_bytes)
|
458 |
+
# return out_path, "✅ Traduction PDF terminée (paragraphes justifiés)."
|
459 |
+
|
460 |
+
# else:
|
461 |
+
# return None, "Type de fichier non supporté. Choisissez .docx ou .pdf"
|
462 |
+
|
463 |
+
# except Exception as e:
|
464 |
+
# return None, f"❌ Erreur pendant la traduction: {e}"
|
465 |
+
|
466 |
+
# # ================== UI ==================
|
467 |
+
# theme = gr.themes.Soft(
|
468 |
+
# primary_hue="indigo",
|
469 |
+
# radius_size="lg",
|
470 |
+
# font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui"]
|
471 |
+
# ).set(
|
472 |
+
# body_background_fill="#f7f7fb",
|
473 |
+
# button_primary_text_color="#ffffff"
|
474 |
+
# )
|
475 |
+
|
476 |
+
# CUSTOM_CSS = """
|
477 |
+
# .gradio-container {max-width: 980px !important;}
|
478 |
+
# .header-card {
|
479 |
+
# background: linear-gradient(135deg, #4f46e5 0%, #7c3aed 100%);
|
480 |
+
# color: white; padding: 22px; border-radius: 18px;
|
481 |
+
# box-shadow: 0 10px 30px rgba(79,70,229,.25);
|
482 |
+
# transition: transform .2s ease;
|
483 |
+
# }
|
484 |
+
# .header-card:hover { transform: translateY(-1px); }
|
485 |
+
# .header-title { font-size: 26px; font-weight: 800; margin: 0 0 6px 0; letter-spacing: .2px; }
|
486 |
+
# .header-sub { opacity: .98; font-size: 14px; }
|
487 |
+
# .brand { display:flex; align-items:center; gap:10px; justify-content:space-between; flex-wrap:wrap; }
|
488 |
+
# .badge {
|
489 |
+
# display:inline-block; background: rgba(255,255,255,.18);
|
490 |
+
# padding: 4px 10px; border-radius: 999px; font-size: 12px;
|
491 |
+
# border: 1px solid rgba(255,255,255,.25);
|
492 |
+
# }
|
493 |
+
# .footer-note {
|
494 |
+
# margin-top: 8px; color: #64748b; font-size: 12px; text-align: center;
|
495 |
+
# }
|
496 |
+
# .support-banner {
|
497 |
+
# margin-top: 14px;
|
498 |
+
# border-radius: 14px;
|
499 |
+
# padding: 14px 16px;
|
500 |
+
# background: linear-gradient(135deg, rgba(79,70,229,.08), rgba(124,58,237,.08));
|
501 |
+
# border: 1px solid rgba(99,102,241,.25);
|
502 |
+
# box-shadow: 0 6px 18px rgba(79,70,229,.08);
|
503 |
+
# }
|
504 |
+
# .support-title { font-weight: 700; font-size: 16px; margin-bottom: 4px; }
|
505 |
+
# .support-text { font-size: 13px; color: #334155; line-height: 1.5; }
|
506 |
+
# .support-contacts { display: flex; gap: 10px; flex-wrap: wrap; margin-top: 8px; }
|
507 |
+
# .support-chip {
|
508 |
+
# display:inline-block; padding: 6px 10px; border-radius: 999px;
|
509 |
+
# background: white; border: 1px dashed rgba(79,70,229,.45);
|
510 |
+
# font-size: 12px; color: #3730a3;
|
511 |
+
# }
|
512 |
+
# """
|
513 |
+
|
514 |
+
# with gr.Blocks(
|
515 |
+
# title="Français → Ngambay · Toadoum/ngambay-fr-v1",
|
516 |
+
# theme=theme,
|
517 |
+
# css=CUSTOM_CSS,
|
518 |
+
# fill_height=True,
|
519 |
+
# ) as demo:
|
520 |
+
# with gr.Group(elem_classes=["header-card"]):
|
521 |
+
# gr.HTML(
|
522 |
+
# """
|
523 |
+
# <div class="brand">
|
524 |
+
# <div>
|
525 |
+
# <div class="header-title">Français → Ngambay (v1)</div>
|
526 |
+
# <div class="header-sub">🚀 Version bêta · Merci de tester et partager vos retours pour améliorer la qualité de traduction.</div>
|
527 |
+
# </div>
|
528 |
+
# <span class="badge">Modèle : Toadoum/ngambay-fr-v1</span>
|
529 |
+
# </div>
|
530 |
+
# """
|
531 |
+
# )
|
532 |
+
|
533 |
+
# with gr.Tabs():
|
534 |
+
# # -------- Tab 1: Texte --------
|
535 |
+
# with gr.Tab("Traduction de texte"):
|
536 |
+
# with gr.Row():
|
537 |
+
# with gr.Column(scale=5):
|
538 |
+
# src = gr.Textbox(
|
539 |
+
# label="Texte source (Français)",
|
540 |
+
# placeholder="Saisissez votre texte en français…",
|
541 |
+
# lines=8,
|
542 |
+
# autofocus=True
|
543 |
+
# )
|
544 |
+
# with gr.Row():
|
545 |
+
# btn = gr.Button("Traduire", variant="primary", scale=3)
|
546 |
+
# clear_btn = gr.Button("Effacer", scale=1)
|
547 |
+
# gr.Examples(
|
548 |
+
# examples=[
|
549 |
+
# ["Bonjour, comment allez-vous aujourd’hui ?"],
|
550 |
+
# ["La réunion de sensibilisation aura lieu demain au centre communautaire."],
|
551 |
+
# ["Merci pour votre participation et votre soutien."],
|
552 |
+
# ["Veuillez suivre les recommandations de santé pour protéger votre famille."]
|
553 |
+
# ],
|
554 |
+
# inputs=[src],
|
555 |
+
# label="Exemples (cliquez pour remplir)"
|
556 |
+
# )
|
557 |
+
# with gr.Column(scale=5):
|
558 |
+
# tgt = gr.Textbox(
|
559 |
+
# label="Traduction (Ngambay)",
|
560 |
+
# lines=8,
|
561 |
+
# interactive=False,
|
562 |
+
# show_copy_button=True
|
563 |
+
# )
|
564 |
+
# gr.Markdown('<div class="footer-note">Astuce : collez un paragraphe complet pour un meilleur contexte. Les noms propres et sigles peuvent nécessiter une relecture humaine.</div>')
|
565 |
+
|
566 |
+
# # -------- Tab 2: Documents --------
|
567 |
+
# with gr.Tab("Traduction de document (.docx / .pdf)"):
|
568 |
+
# with gr.Row():
|
569 |
+
# with gr.Column(scale=5):
|
570 |
+
# doc_inp = gr.File(
|
571 |
+
# label="Sélectionnez un document (.docx ou .pdf)",
|
572 |
+
# file_types=[".docx", ".pdf"],
|
573 |
+
# type="filepath" # ensures a temp filepath; handler also supports binary
|
574 |
+
# )
|
575 |
+
# run_doc = gr.Button("Traduire le document", variant="primary")
|
576 |
+
# with gr.Column(scale=5):
|
577 |
+
# doc_out = gr.File(label="Fichier traduit (télécharger)")
|
578 |
+
# doc_status = gr.Markdown(visible=False)
|
579 |
+
|
580 |
+
# def _wrap_translate_document(f):
|
581 |
+
# path, msg = translate_document(f)
|
582 |
+
# return path, gr.update(value=msg, visible=True)
|
583 |
+
|
584 |
+
# run_doc.click(_wrap_translate_document, inputs=doc_inp, outputs=[doc_out, doc_status])
|
585 |
+
|
586 |
+
# # Contribution banner
|
587 |
+
# gr.HTML(
|
588 |
+
# """
|
589 |
+
# <div class="support-banner">
|
590 |
+
# <div class="support-title">💙 Contribuer au projet (recrutement de linguistes)</div>
|
591 |
+
# <div class="support-text">
|
592 |
+
# Nous cherchons à <b>recruter des linguistes</b> pour renforcer la construction de données Ngambay.
|
593 |
+
# Si vous souhaitez soutenir financièrement ou en tant que bénévole, contactez-nous :
|
594 |
+
# </div>
|
595 |
+
# <div class="support-contacts">
|
596 |
+
# <span class="support-chip">📱 WhatsApp, Airtel Money : <b>+235 66 04 90 94</b></span>
|
597 |
+
# <span class="support-chip">✉️ Email : <a href="mailto:[email protected]">[email protected]</a></span>
|
598 |
+
# </div>
|
599 |
+
# </div>
|
600 |
+
# """
|
601 |
+
# )
|
602 |
+
|
603 |
+
# # Text actions
|
604 |
+
# btn.click(translate_text_simple, inputs=src, outputs=tgt)
|
605 |
+
# clear_btn.click(lambda: ("", ""), outputs=[src, tgt])
|
606 |
+
|
607 |
+
# if __name__ == "__main__":
|
608 |
+
# # No .to(...) anywhere; model stays where Accelerate placed it (or CPU).
|
609 |
+
# demo.queue(default_concurrency_limit=4).launch(share=True)
|
610 |
+
|
611 |
+
|
612 |
import os
|
613 |
import io
|
614 |
import re
|
|
|
616 |
|
617 |
import torch
|
618 |
import gradio as gr
|
619 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
620 |
|
621 |
# --- NEW: docs ---
|
622 |
import docx
|
|
|
628 |
from reportlab.lib.pagesizes import A4
|
629 |
from reportlab.lib.styles import getSampleStyleSheet
|
630 |
from reportlab.lib.enums import TA_JUSTIFY
|
631 |
+
from reportlab.platypus import SimpleDocTemplate, Paragraph as RLParagraph, Spacer
|
632 |
from reportlab.lib.units import cm
|
633 |
|
634 |
# ================= CONFIG =================
|
635 |
MODEL_REPO = "Toadoum/ngambay-fr-v1"
|
636 |
+
FR_CODE = "sba_Latn" # Français (source)
|
637 |
+
NG_CODE = "fr_Latn" # Ngambay (cible)
|
|
|
|
|
|
|
638 |
|
639 |
# Inference
|
640 |
MAX_NEW_TOKENS = 256
|
|
|
642 |
NUM_BEAMS = 1
|
643 |
|
644 |
# Performance knobs
|
645 |
+
MAX_SRC_TOKENS = 420 # per chunk; reduce to ~320 if you want even faster
|
646 |
+
BATCH_SIZE = 12 # number of chunks per model call (tune for your hardware)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
647 |
|
648 |
+
# Device selection
|
649 |
+
device = 0 if torch.cuda.is_available() else -1 # set -1 on Spaces CPU if needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
650 |
|
651 |
+
# Load model & tokenizer once
|
652 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_REPO)
|
653 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_REPO)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
654 |
|
655 |
+
translator = pipeline(
|
656 |
+
task="translation",
|
657 |
+
model=model,
|
658 |
+
tokenizer=tokenizer,
|
659 |
+
device=device,
|
660 |
+
)
|
661 |
|
662 |
+
# Simple text box translation (kept)
|
663 |
def translate_text_simple(text: str) -> str:
|
664 |
if not text or not text.strip():
|
665 |
return ""
|
666 |
+
with torch.no_grad():
|
667 |
+
out = translator(
|
668 |
+
text,
|
669 |
+
src_lang=FR_CODE,
|
670 |
+
tgt_lang=NG_CODE,
|
671 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
672 |
+
do_sample=False,
|
673 |
+
num_beams=NUM_BEAMS,
|
674 |
+
)
|
675 |
+
return out[0]["translation_text"]
|
676 |
|
677 |
+
# ---------- Chunking + Batched Translation + Cache ----------
|
678 |
def tokenize_len(s: str) -> int:
|
679 |
+
return len(tokenizer.encode(s, add_special_tokens=False))
|
680 |
|
681 |
def chunk_text_for_translation(text: str, max_src_tokens: int = MAX_SRC_TOKENS) -> List[str]:
|
682 |
"""Split text by sentence-ish boundaries and merge under token limit."""
|
|
|
703 |
chunks.append(current.strip())
|
704 |
return chunks
|
705 |
|
706 |
+
# module-level cache: identical chunks translated once
|
707 |
TRANSLATION_CACHE: Dict[str, str] = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
708 |
|
709 |
def translate_chunks_list(chunks: List[str], batch_size: int = BATCH_SIZE) -> List[str]:
|
710 |
"""
|
711 |
Translate a list of chunks with de-dup + batching.
|
712 |
Returns translations in the same order as input.
|
713 |
"""
|
714 |
+
# Normalize & collect unique chunks to translate
|
715 |
norm_chunks = [c.strip() for c in chunks]
|
716 |
+
to_translate = []
|
|
|
717 |
for c in norm_chunks:
|
718 |
+
if c and c not in TRANSLATION_CACHE:
|
719 |
+
to_translate.append(c)
|
|
|
720 |
|
721 |
+
# Batched calls
|
722 |
+
with torch.no_grad():
|
723 |
+
for i in range(0, len(to_translate), batch_size):
|
724 |
+
batch = to_translate[i:i + batch_size]
|
725 |
+
outs = translator(
|
726 |
+
batch,
|
727 |
+
src_lang=FR_CODE,
|
728 |
+
tgt_lang=NG_CODE,
|
729 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
730 |
+
do_sample=False,
|
731 |
+
num_beams=NUM_BEAMS,
|
732 |
+
)
|
733 |
+
for src, o in zip(batch, outs):
|
734 |
+
TRANSLATION_CACHE[src] = o["translation_text"]
|
735 |
|
736 |
return [TRANSLATION_CACHE.get(c, "") for c in norm_chunks]
|
737 |
|
|
|
741 |
if not chs:
|
742 |
return ""
|
743 |
trs = translate_chunks_list(chs)
|
744 |
+
# join with space to reconstruct paragraph smoothly
|
745 |
return " ".join(trs).strip()
|
746 |
|
747 |
+
# ---------- DOCX helpers (now fully batched across the whole doc) ----------
|
748 |
def is_heading(par: Paragraph) -> Tuple[bool, int]:
|
749 |
+
style = (par.style.name or "").lower()
|
750 |
+
if "heading" in style:
|
|
|
751 |
for lvl in range(1, 10):
|
752 |
+
if str(lvl) in style:
|
753 |
return True, lvl
|
754 |
return True, 1
|
755 |
return False, 0
|
|
|
775 |
|
776 |
is_head, lvl = is_heading(par)
|
777 |
if is_head:
|
778 |
+
# treat as single chunk (usually short)
|
779 |
work.append({"kind": "heading", "level": min(max(lvl, 1), 9), "range": (len(all_chunks), len(all_chunks)+1)})
|
780 |
all_chunks.append(txt.strip())
|
781 |
else:
|
|
|
788 |
work.append({"kind": "blank"})
|
789 |
|
790 |
# tables
|
791 |
+
for t_idx, table in enumerate(src_doc.tables):
|
792 |
t_desc = {"kind": "table", "rows": len(table.rows), "cols": len(table.columns), "cells": []}
|
793 |
+
for r_idx, row in enumerate(table.rows):
|
794 |
row_cells = []
|
795 |
+
for c_idx, cell in enumerate(row.cells):
|
796 |
cell_text = "\n".join([p.text for p in cell.paragraphs]).strip()
|
797 |
if cell_text:
|
798 |
chs = chunk_text_for_translation(cell_text)
|
|
|
808 |
work.append(t_desc)
|
809 |
|
810 |
# 2) Translate all chunks at once (de-dup + batching)
|
811 |
+
if all_chunks:
|
812 |
+
translated_all = translate_chunks_list(all_chunks)
|
813 |
+
else:
|
814 |
+
translated_all = []
|
815 |
|
816 |
# 3) Rebuild new document with justified paragraphs
|
817 |
new_doc = docx.Document()
|
818 |
+
cursor = 0 # index into translated_all
|
819 |
|
820 |
+
# helper to consume a range and join back
|
821 |
def join_range(rng: Tuple[int, int]) -> str:
|
822 |
if rng is None:
|
823 |
return ""
|
824 |
s, e = rng
|
825 |
return " ".join(translated_all[s:e]).strip()
|
826 |
|
827 |
+
# rebuild paragraphs
|
828 |
for item in work:
|
829 |
if item["kind"] == "blank":
|
830 |
new_doc.add_paragraph("")
|
|
|
850 |
new_doc.save(out)
|
851 |
return out.getvalue()
|
852 |
|
853 |
+
# ---------- PDF helpers (batched across the whole PDF) ----------
|
854 |
def extract_pdf_text_blocks(pdf_bytes: bytes) -> List[List[str]]:
|
855 |
"""
|
856 |
Returns list of pages, each a list of block texts (visual order).
|
|
|
871 |
|
872 |
def build_pdf_from_blocks(translated_pages: List[List[str]]) -> bytes:
|
873 |
"""
|
874 |
+
Build a clean paginated PDF with justified paragraphs (not exact original layout).
|
|
|
875 |
"""
|
876 |
buf = io.BytesIO()
|
877 |
doc = SimpleDocTemplate(
|
|
|
886 |
body.leading = 14
|
887 |
|
888 |
story = []
|
889 |
+
first = True
|
890 |
+
for blocks in translated_pages:
|
891 |
+
if not first:
|
892 |
+
story.append(Spacer(1, 0.1*cm)) # page break trigger
|
893 |
+
first = False
|
894 |
for blk in blocks:
|
895 |
story.append(RLParagraph(blk.replace("\n", "<br/>"), body))
|
896 |
story.append(Spacer(1, 0.35*cm))
|
|
|
900 |
|
901 |
def translate_pdf_bytes(file_bytes: bytes) -> bytes:
|
902 |
"""
|
903 |
+
Read PDF → collect ALL block chunks across pages → single batched translation → rebuild simple justified PDF.
|
904 |
"""
|
905 |
pages_blocks = extract_pdf_text_blocks(file_bytes)
|
906 |
|
|
|
936 |
|
937 |
return build_pdf_from_blocks(translated_pages)
|
938 |
|
939 |
+
# ---------- Gradio file handler (robust) ----------
|
940 |
def translate_document(file_obj):
|
941 |
"""
|
942 |
Accepts gr.File input (NamedString, filepath str, or dict with binary).
|
|
|
973 |
if data is None:
|
974 |
return None, "Impossible de lire le fichier sélectionné."
|
975 |
|
976 |
+
# Clear cache per document to keep memory predictable (optional)
|
977 |
+
# TRANSLATION_CACHE.clear()
|
978 |
+
|
979 |
if name.lower().endswith(".docx"):
|
980 |
out_bytes = translate_docx_bytes(data)
|
981 |
out_path = "translated_ngambay.docx"
|
|
|
1008 |
|
1009 |
CUSTOM_CSS = """
|
1010 |
.gradio-container {max-width: 980px !important;}
|
1011 |
+
.header-card {
|
1012 |
+
background: linear-gradient(135deg, #4f46e5 0%, #7c3aed 100%);
|
1013 |
+
color: white; padding: 22px; border-radius: 18px;
|
1014 |
box-shadow: 0 10px 30px rgba(79,70,229,.25);
|
1015 |
transition: transform .2s ease;
|
1016 |
}
|
|
|
1018 |
.header-title { font-size: 26px; font-weight: 800; margin: 0 0 6px 0; letter-spacing: .2px; }
|
1019 |
.header-sub { opacity: .98; font-size: 14px; }
|
1020 |
.brand { display:flex; align-items:center; gap:10px; justify-content:space-between; flex-wrap:wrap; }
|
1021 |
+
.badge {
|
1022 |
+
display:inline-block; background: rgba(255,255,255,.18);
|
1023 |
+
padding: 4px 10px; border-radius: 999px; font-size: 12px;
|
1024 |
border: 1px solid rgba(255,255,255,.25);
|
1025 |
}
|
1026 |
.footer-note {
|
|
|
1094 |
interactive=False,
|
1095 |
show_copy_button=True
|
1096 |
)
|
1097 |
+
gr.Markdown('<div class="footer-note">Astuce : collez un paragraphe complet pour un meilleur contexte.</div>')
|
1098 |
|
1099 |
# -------- Tab 2: Documents --------
|
1100 |
with gr.Tab("Traduction de document (.docx / .pdf)"):
|
|
|
1108 |
run_doc = gr.Button("Traduire le document", variant="primary")
|
1109 |
with gr.Column(scale=5):
|
1110 |
doc_out = gr.File(label="Fichier traduit (télécharger)")
|
1111 |
+
doc_status = gr.Markdown("")
|
|
|
|
|
|
|
|
|
1112 |
|
1113 |
+
run_doc.click(translate_document, inputs=doc_inp, outputs=[doc_out, doc_status])
|
1114 |
|
1115 |
# Contribution banner
|
1116 |
gr.HTML(
|
|
|
1134 |
clear_btn.click(lambda: ("", ""), outputs=[src, tgt])
|
1135 |
|
1136 |
if __name__ == "__main__":
|
1137 |
+
demo.queue(default_concurrency_limit=4).launch(analytics_enabled=False)
|
|