Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,36 @@
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import io
|
| 3 |
import re
|
| 4 |
from typing import List, Tuple
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import torch
|
| 6 |
import gradio as gr
|
| 7 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
import docx
|
| 9 |
from docx.enum.text import WD_ALIGN_PARAGRAPH
|
| 10 |
from docx.text.paragraph import Paragraph as DocxParagraph
|
|
|
|
|
|
|
| 11 |
import fitz # PyMuPDF
|
| 12 |
from reportlab.lib.pagesizes import A4
|
| 13 |
from reportlab.lib.styles import getSampleStyleSheet
|
|
@@ -16,15 +39,12 @@ from reportlab.platypus import SimpleDocTemplate, Paragraph as RLParagraph, Spac
|
|
| 16 |
from reportlab.lib.units import cm
|
| 17 |
from html import escape as html_escape
|
| 18 |
|
| 19 |
-
# --- Disable compile/dynamo to avoid meta tensor issues ---
|
| 20 |
-
os.environ["TORCH_COMPILE_DISABLE"] = "1"
|
| 21 |
-
os.environ["TORCHDYNAMO_DISABLE"] = "1"
|
| 22 |
-
os.environ.setdefault("TRANSFORMERS_NO_ADVISORY_WARNINGS", "1")
|
| 23 |
-
|
| 24 |
# --- Config ---
|
| 25 |
MODEL_REPO = "Toadoum/ngambay-fr-v1"
|
|
|
|
|
|
|
| 26 |
FR_CODE_PREFERRED = "fra_Latn" # French (NLLB)
|
| 27 |
-
FR_CODE_ALT
|
| 28 |
NG_CODE_PREFERRED = "sba_Latn" # Ngambay (Saba) Latin
|
| 29 |
|
| 30 |
# --- Inference params ---
|
|
@@ -32,31 +52,62 @@ MAX_NEW_TOKENS = 256
|
|
| 32 |
TEMPERATURE = 0.0 # not used when do_sample=False
|
| 33 |
|
| 34 |
# --- Device selection ---
|
| 35 |
-
device =
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
#
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
def _resolve_lang_code(preferred: str, alt: str | None) -> str:
|
| 61 |
codes = getattr(tokenizer, "lang_code_to_id", None)
|
| 62 |
if isinstance(codes, dict) and len(codes) > 0:
|
|
@@ -66,13 +117,11 @@ def _resolve_lang_code(preferred: str, alt: str | None) -> str:
|
|
| 66 |
return alt
|
| 67 |
if hasattr(tokenizer, "get_lang_id"):
|
| 68 |
try:
|
| 69 |
-
tokenizer.get_lang_id(preferred)
|
| 70 |
-
return preferred
|
| 71 |
except Exception:
|
| 72 |
if alt:
|
| 73 |
try:
|
| 74 |
-
tokenizer.get_lang_id(alt)
|
| 75 |
-
return alt
|
| 76 |
except Exception:
|
| 77 |
pass
|
| 78 |
return preferred
|
|
@@ -80,7 +129,7 @@ def _resolve_lang_code(preferred: str, alt: str | None) -> str:
|
|
| 80 |
FR_CODE = _resolve_lang_code(FR_CODE_PREFERRED, FR_CODE_ALT)
|
| 81 |
NG_CODE = _resolve_lang_code(NG_CODE_PREFERRED, None)
|
| 82 |
|
| 83 |
-
#
|
| 84 |
def _token_len(s: str) -> int:
|
| 85 |
return len(tokenizer.encode(s, add_special_tokens=False))
|
| 86 |
|
|
@@ -96,26 +145,18 @@ def chunk_text_for_translation(text: str, max_src_tokens: int = 380) -> List[str
|
|
| 96 |
chunks, current = [], ""
|
| 97 |
for sent in sentences:
|
| 98 |
if not current:
|
| 99 |
-
current = sent
|
| 100 |
-
continue
|
| 101 |
candidate = f"{current} {sent}"
|
| 102 |
if _token_len(candidate) <= max_src_tokens:
|
| 103 |
current = candidate
|
| 104 |
else:
|
| 105 |
-
chunks.append(current.strip())
|
| 106 |
-
current = sent
|
| 107 |
if current.strip():
|
| 108 |
chunks.append(current.strip())
|
| 109 |
return chunks if chunks else ([text] if text.strip() else [])
|
| 110 |
|
| 111 |
-
|
| 112 |
def _translate_with_pipeline(text: str) -> str:
|
| 113 |
-
translator = pipeline(
|
| 114 |
-
task="translation",
|
| 115 |
-
model=model,
|
| 116 |
-
tokenizer=tokenizer,
|
| 117 |
-
device=device,
|
| 118 |
-
)
|
| 119 |
out = translator(
|
| 120 |
text,
|
| 121 |
src_lang=FR_CODE,
|
|
@@ -126,11 +167,13 @@ def _translate_with_pipeline(text: str) -> str:
|
|
| 126 |
key = "translation_text" if "translation_text" in out[0] else "generated_text"
|
| 127 |
return out[0][key]
|
| 128 |
|
|
|
|
| 129 |
def _translate_with_generate(text: str) -> str:
|
|
|
|
| 130 |
if hasattr(tokenizer, "src_lang"):
|
| 131 |
tokenizer.src_lang = FR_CODE
|
| 132 |
-
inputs = tokenizer(text, return_tensors="pt").to(device)
|
| 133 |
|
|
|
|
| 134 |
forced_bos = None
|
| 135 |
lang2id = getattr(tokenizer, "lang_code_to_id", None)
|
| 136 |
if isinstance(lang2id, dict) and NG_CODE in lang2id:
|
|
@@ -141,38 +184,40 @@ def _translate_with_generate(text: str) -> str:
|
|
| 141 |
except Exception:
|
| 142 |
forced_bos = None
|
| 143 |
|
|
|
|
|
|
|
|
|
|
| 144 |
gen_kwargs = dict(max_new_tokens=MAX_NEW_TOKENS, do_sample=False)
|
| 145 |
if forced_bos is not None:
|
| 146 |
-
gen_kwargs["forced_bos_token_id"] =
|
| 147 |
|
| 148 |
with torch.no_grad():
|
| 149 |
output_ids = model.generate(**inputs, **gen_kwargs)
|
| 150 |
-
|
| 151 |
return tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
|
| 152 |
|
| 153 |
-
#
|
|
|
|
| 154 |
def translate_text_simple(text: str) -> str:
|
| 155 |
text = (text or "").strip()
|
| 156 |
if not text:
|
| 157 |
return ""
|
| 158 |
try:
|
| 159 |
return _translate_with_pipeline(text)
|
| 160 |
-
except Exception
|
| 161 |
-
print(f"Pipeline error: {e}. Falling back to generate().")
|
| 162 |
return _translate_with_generate(text)
|
| 163 |
|
|
|
|
| 164 |
def translate_large_text(text: str) -> str:
|
| 165 |
chunks = chunk_text_for_translation(text)
|
| 166 |
outputs = []
|
| 167 |
for ch in chunks:
|
| 168 |
try:
|
| 169 |
outputs.append(_translate_with_pipeline(ch))
|
| 170 |
-
except Exception
|
| 171 |
-
print(f"Pipeline error for chunk: {e}. Falling back to generate().")
|
| 172 |
outputs.append(_translate_with_generate(ch))
|
| 173 |
return "\n".join(outputs).strip()
|
| 174 |
|
| 175 |
-
#
|
| 176 |
def is_heading(par: DocxParagraph) -> Tuple[bool, int]:
|
| 177 |
style_name = (par.style.name or "").lower()
|
| 178 |
if not style_name:
|
|
@@ -188,21 +233,20 @@ def translate_docx_bytes(file_bytes: bytes) -> bytes:
|
|
| 188 |
f = io.BytesIO(file_bytes)
|
| 189 |
doc = docx.Document(f)
|
| 190 |
new = docx.Document()
|
|
|
|
| 191 |
for par in doc.paragraphs:
|
| 192 |
text = par.text or ""
|
| 193 |
if not text.strip():
|
| 194 |
-
new.add_paragraph("")
|
| 195 |
-
continue
|
| 196 |
is_head, lvl = is_heading(par)
|
| 197 |
translated = translate_large_text(text)
|
| 198 |
if is_head:
|
| 199 |
new.add_heading(translated, level=min(max(lvl, 1), 9))
|
| 200 |
else:
|
| 201 |
np = new.add_paragraph(translated)
|
| 202 |
-
try:
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
pass
|
| 206 |
for table in doc.tables:
|
| 207 |
new_table = new.add_table(rows=len(table.rows), cols=len(table.columns))
|
| 208 |
for r_idx, row in enumerate(table.rows):
|
|
@@ -212,21 +256,20 @@ def translate_docx_bytes(file_bytes: bytes) -> bytes:
|
|
| 212 |
tgt_cell = new_table.cell(r_idx, c_idx)
|
| 213 |
tgt_cell.text = translated
|
| 214 |
for p in tgt_cell.paragraphs:
|
| 215 |
-
try:
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
pass
|
| 219 |
out = io.BytesIO()
|
| 220 |
new.save(out)
|
| 221 |
return out.getvalue()
|
| 222 |
|
| 223 |
-
#
|
| 224 |
def extract_pdf_text_blocks(pdf_bytes: bytes) -> List[List[str]]:
|
| 225 |
pages_blocks: List[List[str]] = []
|
| 226 |
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
|
| 227 |
for page in doc:
|
| 228 |
blocks = page.get_text("blocks") or []
|
| 229 |
-
blocks.sort(key=lambda b: (round(b[1], 1), round(b[0], 1)))
|
| 230 |
page_texts = []
|
| 231 |
for b in blocks:
|
| 232 |
text = (b[4] if len(b) > 4 else "") or ""
|
|
@@ -245,13 +288,10 @@ def build_pdf_from_blocks(translated_pages: List[List[str]]) -> bytes:
|
|
| 245 |
topMargin=2*cm, bottomMargin=2*cm
|
| 246 |
)
|
| 247 |
styles = getSampleStyleSheet()
|
| 248 |
-
body = styles["BodyText"]
|
| 249 |
-
body.alignment = TA_JUSTIFY
|
| 250 |
-
body.leading = 14
|
| 251 |
story = []
|
| 252 |
for p_idx, blocks in enumerate(translated_pages):
|
| 253 |
-
if p_idx > 0:
|
| 254 |
-
story.append(PageBreak())
|
| 255 |
for blk in blocks:
|
| 256 |
safe = html_escape(blk).replace("\n", "<br/>")
|
| 257 |
story.append(RLParagraph(safe, body))
|
|
@@ -267,7 +307,7 @@ def translate_pdf_bytes(file_bytes: bytes) -> bytes:
|
|
| 267 |
translated_pages.append(t_blocks)
|
| 268 |
return build_pdf_from_blocks(translated_pages)
|
| 269 |
|
| 270 |
-
#
|
| 271 |
def translate_document(file_path: str):
|
| 272 |
if not file_path:
|
| 273 |
return None, "Veuillez sélectionner un fichier .docx ou .pdf"
|
|
@@ -275,23 +315,24 @@ def translate_document(file_path: str):
|
|
| 275 |
name = os.path.basename(file_path)
|
| 276 |
with open(file_path, "rb") as f:
|
| 277 |
data = f.read()
|
|
|
|
| 278 |
if name.lower().endswith(".docx"):
|
| 279 |
out_bytes = translate_docx_bytes(data)
|
| 280 |
out_path = "translated_ngambay.docx"
|
| 281 |
-
with open(out_path, "wb") as f:
|
| 282 |
-
f.write(out_bytes)
|
| 283 |
return out_path, "✅ Traduction DOCX terminée (paragraphes justifiés)."
|
|
|
|
| 284 |
if name.lower().endswith(".pdf"):
|
| 285 |
out_bytes = translate_pdf_bytes(data)
|
| 286 |
out_path = "translated_ngambay.pdf"
|
| 287 |
-
with open(out_path, "wb") as f:
|
| 288 |
-
f.write(out_bytes)
|
| 289 |
return out_path, "✅ Traduction PDF terminée (paragraphes justifiés)."
|
|
|
|
| 290 |
return None, "Type de fichier non supporté. Choisissez .docx ou .pdf"
|
| 291 |
except Exception as e:
|
| 292 |
return None, f"❌ Erreur pendant la traduction: {e}"
|
| 293 |
|
| 294 |
-
#
|
| 295 |
theme = gr.themes.Soft(
|
| 296 |
primary_hue="indigo",
|
| 297 |
radius_size="lg",
|
|
@@ -303,9 +344,9 @@ theme = gr.themes.Soft(
|
|
| 303 |
|
| 304 |
CUSTOM_CSS = """
|
| 305 |
.gradio-container {max-width: 980px !important;}
|
| 306 |
-
.header-card {
|
| 307 |
-
background: linear-gradient(135deg, #4f46e5 0%, #7c3aed 100%);
|
| 308 |
-
color: white; padding: 22px; border-radius: 18px;
|
| 309 |
box-shadow: 0 10px 30px rgba(79,70,229,.25);
|
| 310 |
transition: transform .2s ease;
|
| 311 |
}
|
|
@@ -313,9 +354,9 @@ CUSTOM_CSS = """
|
|
| 313 |
.header-title { font-size: 26px; font-weight: 800; margin: 0 0 6px 0; letter-spacing: .2px; }
|
| 314 |
.header-sub { opacity: .98; font-size: 14px; }
|
| 315 |
.brand { display:flex; align-items:center; gap:10px; justify-content:space-between; flex-wrap:wrap; }
|
| 316 |
-
.badge {
|
| 317 |
-
display:inline-block; background: rgba(255,255,255,.18);
|
| 318 |
-
padding: 4px 10px; border-radius: 999px; font-size: 12px;
|
| 319 |
border: 1px solid rgba(255,255,255,.25);
|
| 320 |
}
|
| 321 |
.footer-note { margin-top: 8px; color: #64748b; font-size: 12px; text-align: center; }
|
|
@@ -355,7 +396,9 @@ with gr.Blocks(
|
|
| 355 |
</div>
|
| 356 |
"""
|
| 357 |
)
|
|
|
|
| 358 |
with gr.Tabs():
|
|
|
|
| 359 |
with gr.Tab("Traduction de texte"):
|
| 360 |
with gr.Row():
|
| 361 |
with gr.Column(scale=5):
|
|
@@ -386,19 +429,24 @@ with gr.Blocks(
|
|
| 386 |
show_copy_button=True
|
| 387 |
)
|
| 388 |
gr.Markdown('<div class="footer-note">Astuce : collez un paragraphe complet pour un meilleur contexte.</div>')
|
|
|
|
|
|
|
| 389 |
with gr.Tab("Traduction de document (.docx / .pdf)"):
|
| 390 |
with gr.Row():
|
| 391 |
with gr.Column(scale=5):
|
| 392 |
doc_inp = gr.File(
|
| 393 |
label="Sélectionnez un document (.docx ou .pdf)",
|
| 394 |
file_types=[".docx", ".pdf"],
|
| 395 |
-
type="filepath"
|
| 396 |
)
|
| 397 |
run_doc = gr.Button("Traduire le document", variant="primary")
|
| 398 |
with gr.Column(scale=5):
|
| 399 |
doc_out = gr.File(label="Fichier traduit (télécharger)")
|
| 400 |
doc_status = gr.Markdown("")
|
|
|
|
| 401 |
run_doc.click(translate_document, inputs=doc_inp, outputs=[doc_out, doc_status])
|
|
|
|
|
|
|
| 402 |
gr.HTML(
|
| 403 |
"""
|
| 404 |
<div class="support-banner">
|
|
@@ -414,13 +462,17 @@ with gr.Blocks(
|
|
| 414 |
</div>
|
| 415 |
"""
|
| 416 |
)
|
|
|
|
|
|
|
| 417 |
btn.click(translate_text_simple, inputs=src, outputs=tgt)
|
| 418 |
clear_btn.click(lambda: ("", ""), outputs=[src, tgt])
|
| 419 |
|
| 420 |
if __name__ == "__main__":
|
|
|
|
|
|
|
| 421 |
demo.queue(default_concurrency_limit=4).launch(
|
| 422 |
-
ssr_mode=False,
|
| 423 |
-
share=False if
|
| 424 |
server_name="0.0.0.0",
|
| 425 |
server_port=int(os.environ.get("PORT", 7860)),
|
| 426 |
show_error=True,
|
|
|
|
| 1 |
+
# ==== Français -> Ngambay Translator App (meta-safe on HF Spaces) ====
|
| 2 |
+
|
| 3 |
import os
|
| 4 |
import io
|
| 5 |
import re
|
| 6 |
from typing import List, Tuple
|
| 7 |
+
|
| 8 |
+
# --- Disable compile/dynamo/fake tensor paths EARLY (before torch import) ---
|
| 9 |
+
os.environ["TORCH_COMPILE_DISABLE"] = "1"
|
| 10 |
+
os.environ["TORCHDYNAMO_DISABLE"] = "1"
|
| 11 |
+
os.environ.setdefault("TRANSFORMERS_NO_ADVISORY_WARNINGS", "1")
|
| 12 |
+
|
| 13 |
import torch
|
| 14 |
import gradio as gr
|
| 15 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
| 16 |
+
|
| 17 |
+
# Try to hard-disable dynamo at runtime too (belt & suspenders)
|
| 18 |
+
try:
|
| 19 |
+
import torch._dynamo as dynamo
|
| 20 |
+
dynamo.config.suppress_errors = True
|
| 21 |
+
# wrap helper to decorate functions
|
| 22 |
+
def no_compile(fn):
|
| 23 |
+
return dynamo.disable(fn)
|
| 24 |
+
except Exception:
|
| 25 |
+
def no_compile(fn):
|
| 26 |
+
return fn
|
| 27 |
+
|
| 28 |
+
# --- DOCX (python-docx) ---
|
| 29 |
import docx
|
| 30 |
from docx.enum.text import WD_ALIGN_PARAGRAPH
|
| 31 |
from docx.text.paragraph import Paragraph as DocxParagraph
|
| 32 |
+
|
| 33 |
+
# --- PDF read & write ---
|
| 34 |
import fitz # PyMuPDF
|
| 35 |
from reportlab.lib.pagesizes import A4
|
| 36 |
from reportlab.lib.styles import getSampleStyleSheet
|
|
|
|
| 39 |
from reportlab.lib.units import cm
|
| 40 |
from html import escape as html_escape
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
# --- Config ---
|
| 43 |
MODEL_REPO = "Toadoum/ngambay-fr-v1"
|
| 44 |
+
|
| 45 |
+
# Prefer NLLB codes; auto-resolve alternates if needed.
|
| 46 |
FR_CODE_PREFERRED = "fra_Latn" # French (NLLB)
|
| 47 |
+
FR_CODE_ALT = "fr_Latn" # Some custom models use this
|
| 48 |
NG_CODE_PREFERRED = "sba_Latn" # Ngambay (Saba) Latin
|
| 49 |
|
| 50 |
# --- Inference params ---
|
|
|
|
| 52 |
TEMPERATURE = 0.0 # not used when do_sample=False
|
| 53 |
|
| 54 |
# --- Device selection ---
|
| 55 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 56 |
+
device_str = "cuda" if torch.cuda.is_available() else "cpu"
|
| 57 |
+
|
| 58 |
+
# ---------- Load model & tokenizer with META-SAFE path ----------
|
| 59 |
+
def _has_meta_tensors(m: torch.nn.Module) -> bool:
|
| 60 |
+
try:
|
| 61 |
+
return any(p.is_meta for p in m.parameters()) or any(b.is_meta for b in m.buffers())
|
| 62 |
+
except Exception:
|
| 63 |
+
# Fallback check by device type
|
| 64 |
+
return any(getattr(p, "device", None) and p.device.type == "meta" for p in m.parameters())
|
| 65 |
+
|
| 66 |
+
def _ensure_pad_token(tok, mdl):
|
| 67 |
+
if tok.pad_token_id is None:
|
| 68 |
+
if tok.eos_token is not None:
|
| 69 |
+
tok.pad_token = tok.eos_token
|
| 70 |
+
elif tok.unk_token is not None:
|
| 71 |
+
tok.pad_token = tok.unk_token
|
| 72 |
+
else:
|
| 73 |
+
tok.add_special_tokens({"pad_token": "<pad>"})
|
| 74 |
+
mdl.resize_token_embeddings(len(tok))
|
| 75 |
+
mdl.config.pad_token_id = tok.pad_token_id
|
| 76 |
+
|
| 77 |
+
def _load_model_and_tokenizer():
|
| 78 |
+
tok = AutoTokenizer.from_pretrained(MODEL_REPO)
|
| 79 |
+
# First load WITHOUT low_cpu_mem_usage to avoid meta-inits on some stacks
|
| 80 |
+
mdl = AutoModelForSeq2SeqLM.from_pretrained(
|
| 81 |
+
MODEL_REPO,
|
| 82 |
+
low_cpu_mem_usage=False, # critical: avoid meta init
|
| 83 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else None,
|
| 84 |
+
)
|
| 85 |
+
if _has_meta_tensors(mdl):
|
| 86 |
+
# Fallback: force a "real" load
|
| 87 |
+
del mdl
|
| 88 |
+
mdl = AutoModelForSeq2SeqLM.from_pretrained(
|
| 89 |
+
MODEL_REPO,
|
| 90 |
+
low_cpu_mem_usage=False,
|
| 91 |
+
torch_dtype=None, # ensure real tensors on CPU first
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# Move model AFTER we've verified no meta weights
|
| 95 |
+
mdl = mdl.to(device_str)
|
| 96 |
+
|
| 97 |
+
# Ensure pad token to avoid generate() quirks
|
| 98 |
+
_ensure_pad_token(tok, mdl)
|
| 99 |
+
return tok, mdl
|
| 100 |
+
|
| 101 |
+
tokenizer, model = _load_model_and_tokenizer()
|
| 102 |
+
|
| 103 |
+
translator = pipeline(
|
| 104 |
+
task="translation",
|
| 105 |
+
model=model,
|
| 106 |
+
tokenizer=tokenizer,
|
| 107 |
+
device=device,
|
| 108 |
+
framework="pt",
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
def _resolve_lang_code(preferred: str, alt: str | None) -> str:
|
| 112 |
codes = getattr(tokenizer, "lang_code_to_id", None)
|
| 113 |
if isinstance(codes, dict) and len(codes) > 0:
|
|
|
|
| 117 |
return alt
|
| 118 |
if hasattr(tokenizer, "get_lang_id"):
|
| 119 |
try:
|
| 120 |
+
tokenizer.get_lang_id(preferred); return preferred
|
|
|
|
| 121 |
except Exception:
|
| 122 |
if alt:
|
| 123 |
try:
|
| 124 |
+
tokenizer.get_lang_id(alt); return alt
|
|
|
|
| 125 |
except Exception:
|
| 126 |
pass
|
| 127 |
return preferred
|
|
|
|
| 129 |
FR_CODE = _resolve_lang_code(FR_CODE_PREFERRED, FR_CODE_ALT)
|
| 130 |
NG_CODE = _resolve_lang_code(NG_CODE_PREFERRED, None)
|
| 131 |
|
| 132 |
+
# ---------- helpers ----------
|
| 133 |
def _token_len(s: str) -> int:
|
| 134 |
return len(tokenizer.encode(s, add_special_tokens=False))
|
| 135 |
|
|
|
|
| 145 |
chunks, current = [], ""
|
| 146 |
for sent in sentences:
|
| 147 |
if not current:
|
| 148 |
+
current = sent; continue
|
|
|
|
| 149 |
candidate = f"{current} {sent}"
|
| 150 |
if _token_len(candidate) <= max_src_tokens:
|
| 151 |
current = candidate
|
| 152 |
else:
|
| 153 |
+
chunks.append(current.strip()); current = sent
|
|
|
|
| 154 |
if current.strip():
|
| 155 |
chunks.append(current.strip())
|
| 156 |
return chunks if chunks else ([text] if text.strip() else [])
|
| 157 |
|
| 158 |
+
@no_compile
|
| 159 |
def _translate_with_pipeline(text: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
out = translator(
|
| 161 |
text,
|
| 162 |
src_lang=FR_CODE,
|
|
|
|
| 167 |
key = "translation_text" if "translation_text" in out[0] else "generated_text"
|
| 168 |
return out[0][key]
|
| 169 |
|
| 170 |
+
@no_compile
|
| 171 |
def _translate_with_generate(text: str) -> str:
|
| 172 |
+
# Set src language if supported
|
| 173 |
if hasattr(tokenizer, "src_lang"):
|
| 174 |
tokenizer.src_lang = FR_CODE
|
|
|
|
| 175 |
|
| 176 |
+
# Determine forced BOS for target language
|
| 177 |
forced_bos = None
|
| 178 |
lang2id = getattr(tokenizer, "lang_code_to_id", None)
|
| 179 |
if isinstance(lang2id, dict) and NG_CODE in lang2id:
|
|
|
|
| 184 |
except Exception:
|
| 185 |
forced_bos = None
|
| 186 |
|
| 187 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 188 |
+
inputs = {k: v.to(device_str) for k, v in inputs.items()}
|
| 189 |
+
|
| 190 |
gen_kwargs = dict(max_new_tokens=MAX_NEW_TOKENS, do_sample=False)
|
| 191 |
if forced_bos is not None:
|
| 192 |
+
gen_kwargs["forced_bos_token_id"] = forced_bos
|
| 193 |
|
| 194 |
with torch.no_grad():
|
| 195 |
output_ids = model.generate(**inputs, **gen_kwargs)
|
|
|
|
| 196 |
return tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
|
| 197 |
|
| 198 |
+
# ---------- Public translate APIs ----------
|
| 199 |
+
@no_compile
|
| 200 |
def translate_text_simple(text: str) -> str:
|
| 201 |
text = (text or "").strip()
|
| 202 |
if not text:
|
| 203 |
return ""
|
| 204 |
try:
|
| 205 |
return _translate_with_pipeline(text)
|
| 206 |
+
except Exception:
|
|
|
|
| 207 |
return _translate_with_generate(text)
|
| 208 |
|
| 209 |
+
@no_compile
|
| 210 |
def translate_large_text(text: str) -> str:
|
| 211 |
chunks = chunk_text_for_translation(text)
|
| 212 |
outputs = []
|
| 213 |
for ch in chunks:
|
| 214 |
try:
|
| 215 |
outputs.append(_translate_with_pipeline(ch))
|
| 216 |
+
except Exception:
|
|
|
|
| 217 |
outputs.append(_translate_with_generate(ch))
|
| 218 |
return "\n".join(outputs).strip()
|
| 219 |
|
| 220 |
+
# ---------- DOCX helpers ----------
|
| 221 |
def is_heading(par: DocxParagraph) -> Tuple[bool, int]:
|
| 222 |
style_name = (par.style.name or "").lower()
|
| 223 |
if not style_name:
|
|
|
|
| 233 |
f = io.BytesIO(file_bytes)
|
| 234 |
doc = docx.Document(f)
|
| 235 |
new = docx.Document()
|
| 236 |
+
|
| 237 |
for par in doc.paragraphs:
|
| 238 |
text = par.text or ""
|
| 239 |
if not text.strip():
|
| 240 |
+
new.add_paragraph(""); continue
|
|
|
|
| 241 |
is_head, lvl = is_heading(par)
|
| 242 |
translated = translate_large_text(text)
|
| 243 |
if is_head:
|
| 244 |
new.add_heading(translated, level=min(max(lvl, 1), 9))
|
| 245 |
else:
|
| 246 |
np = new.add_paragraph(translated)
|
| 247 |
+
try: np.alignment = WD_ALIGN_PARAGRAPH.JUSTIFY
|
| 248 |
+
except Exception: pass
|
| 249 |
+
|
|
|
|
| 250 |
for table in doc.tables:
|
| 251 |
new_table = new.add_table(rows=len(table.rows), cols=len(table.columns))
|
| 252 |
for r_idx, row in enumerate(table.rows):
|
|
|
|
| 256 |
tgt_cell = new_table.cell(r_idx, c_idx)
|
| 257 |
tgt_cell.text = translated
|
| 258 |
for p in tgt_cell.paragraphs:
|
| 259 |
+
try: p.alignment = WD_ALIGN_PARAGRAPH.JUSTIFY
|
| 260 |
+
except Exception: pass
|
| 261 |
+
|
|
|
|
| 262 |
out = io.BytesIO()
|
| 263 |
new.save(out)
|
| 264 |
return out.getvalue()
|
| 265 |
|
| 266 |
+
# ---------- PDF helpers ----------
|
| 267 |
def extract_pdf_text_blocks(pdf_bytes: bytes) -> List[List[str]]:
|
| 268 |
pages_blocks: List[List[str]] = []
|
| 269 |
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
|
| 270 |
for page in doc:
|
| 271 |
blocks = page.get_text("blocks") or []
|
| 272 |
+
blocks.sort(key=lambda b: (round(b[1], 1), round(b[0], 1))) # (y, x)
|
| 273 |
page_texts = []
|
| 274 |
for b in blocks:
|
| 275 |
text = (b[4] if len(b) > 4 else "") or ""
|
|
|
|
| 288 |
topMargin=2*cm, bottomMargin=2*cm
|
| 289 |
)
|
| 290 |
styles = getSampleStyleSheet()
|
| 291 |
+
body = styles["BodyText"]; body.alignment = TA_JUSTIFY; body.leading = 14
|
|
|
|
|
|
|
| 292 |
story = []
|
| 293 |
for p_idx, blocks in enumerate(translated_pages):
|
| 294 |
+
if p_idx > 0: story.append(PageBreak())
|
|
|
|
| 295 |
for blk in blocks:
|
| 296 |
safe = html_escape(blk).replace("\n", "<br/>")
|
| 297 |
story.append(RLParagraph(safe, body))
|
|
|
|
| 307 |
translated_pages.append(t_blocks)
|
| 308 |
return build_pdf_from_blocks(translated_pages)
|
| 309 |
|
| 310 |
+
# ---------- Gradio file handler ----------
|
| 311 |
def translate_document(file_path: str):
|
| 312 |
if not file_path:
|
| 313 |
return None, "Veuillez sélectionner un fichier .docx ou .pdf"
|
|
|
|
| 315 |
name = os.path.basename(file_path)
|
| 316 |
with open(file_path, "rb") as f:
|
| 317 |
data = f.read()
|
| 318 |
+
|
| 319 |
if name.lower().endswith(".docx"):
|
| 320 |
out_bytes = translate_docx_bytes(data)
|
| 321 |
out_path = "translated_ngambay.docx"
|
| 322 |
+
with open(out_path, "wb") as f: f.write(out_bytes)
|
|
|
|
| 323 |
return out_path, "✅ Traduction DOCX terminée (paragraphes justifiés)."
|
| 324 |
+
|
| 325 |
if name.lower().endswith(".pdf"):
|
| 326 |
out_bytes = translate_pdf_bytes(data)
|
| 327 |
out_path = "translated_ngambay.pdf"
|
| 328 |
+
with open(out_path, "wb") as f: f.write(out_bytes)
|
|
|
|
| 329 |
return out_path, "✅ Traduction PDF terminée (paragraphes justifiés)."
|
| 330 |
+
|
| 331 |
return None, "Type de fichier non supporté. Choisissez .docx ou .pdf"
|
| 332 |
except Exception as e:
|
| 333 |
return None, f"❌ Erreur pendant la traduction: {e}"
|
| 334 |
|
| 335 |
+
# ================== UI ==================
|
| 336 |
theme = gr.themes.Soft(
|
| 337 |
primary_hue="indigo",
|
| 338 |
radius_size="lg",
|
|
|
|
| 344 |
|
| 345 |
CUSTOM_CSS = """
|
| 346 |
.gradio-container {max-width: 980px !important;}
|
| 347 |
+
.header-card {
|
| 348 |
+
background: linear-gradient(135deg, #4f46e5 0%, #7c3aed 100%);
|
| 349 |
+
color: white; padding: 22px; border-radius: 18px;
|
| 350 |
box-shadow: 0 10px 30px rgba(79,70,229,.25);
|
| 351 |
transition: transform .2s ease;
|
| 352 |
}
|
|
|
|
| 354 |
.header-title { font-size: 26px; font-weight: 800; margin: 0 0 6px 0; letter-spacing: .2px; }
|
| 355 |
.header-sub { opacity: .98; font-size: 14px; }
|
| 356 |
.brand { display:flex; align-items:center; gap:10px; justify-content:space-between; flex-wrap:wrap; }
|
| 357 |
+
.badge {
|
| 358 |
+
display:inline-block; background: rgba(255,255,255,.18);
|
| 359 |
+
padding: 4px 10px; border-radius: 999px; font-size: 12px;
|
| 360 |
border: 1px solid rgba(255,255,255,.25);
|
| 361 |
}
|
| 362 |
.footer-note { margin-top: 8px; color: #64748b; font-size: 12px; text-align: center; }
|
|
|
|
| 396 |
</div>
|
| 397 |
"""
|
| 398 |
)
|
| 399 |
+
|
| 400 |
with gr.Tabs():
|
| 401 |
+
# -------- Tab 1: Texte --------
|
| 402 |
with gr.Tab("Traduction de texte"):
|
| 403 |
with gr.Row():
|
| 404 |
with gr.Column(scale=5):
|
|
|
|
| 429 |
show_copy_button=True
|
| 430 |
)
|
| 431 |
gr.Markdown('<div class="footer-note">Astuce : collez un paragraphe complet pour un meilleur contexte.</div>')
|
| 432 |
+
|
| 433 |
+
# -------- Tab 2: Documents --------
|
| 434 |
with gr.Tab("Traduction de document (.docx / .pdf)"):
|
| 435 |
with gr.Row():
|
| 436 |
with gr.Column(scale=5):
|
| 437 |
doc_inp = gr.File(
|
| 438 |
label="Sélectionnez un document (.docx ou .pdf)",
|
| 439 |
file_types=[".docx", ".pdf"],
|
| 440 |
+
type="filepath" # returns temp filepath
|
| 441 |
)
|
| 442 |
run_doc = gr.Button("Traduire le document", variant="primary")
|
| 443 |
with gr.Column(scale=5):
|
| 444 |
doc_out = gr.File(label="Fichier traduit (télécharger)")
|
| 445 |
doc_status = gr.Markdown("")
|
| 446 |
+
|
| 447 |
run_doc.click(translate_document, inputs=doc_inp, outputs=[doc_out, doc_status])
|
| 448 |
+
|
| 449 |
+
# Contribution banner
|
| 450 |
gr.HTML(
|
| 451 |
"""
|
| 452 |
<div class="support-banner">
|
|
|
|
| 462 |
</div>
|
| 463 |
"""
|
| 464 |
)
|
| 465 |
+
|
| 466 |
+
# Text actions
|
| 467 |
btn.click(translate_text_simple, inputs=src, outputs=tgt)
|
| 468 |
clear_btn.click(lambda: ("", ""), outputs=[src, tgt])
|
| 469 |
|
| 470 |
if __name__ == "__main__":
|
| 471 |
+
# On HF Spaces: disable SSR and don't use share=True
|
| 472 |
+
on_spaces = bool(os.environ.get("SPACE_ID"))
|
| 473 |
demo.queue(default_concurrency_limit=4).launch(
|
| 474 |
+
ssr_mode=False, # key fix for meta tensors
|
| 475 |
+
share=False if on_spaces else True, # share=True not supported on Spaces
|
| 476 |
server_name="0.0.0.0",
|
| 477 |
server_port=int(os.environ.get("PORT", 7860)),
|
| 478 |
show_error=True,
|