from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification import gradio as gr import torch scam_model_name = "Tlezz324/thai-scam-detector-v1.69" tokenizer = AutoTokenizer.from_pretrained(scam_model_name) scam_model = AutoModelForSequenceClassification.from_pretrained(scam_model_name) asr = pipeline("automatic-speech-recognition", model="airesearch/wav2vec2-large-xlsr-53-th") def transcribe_and_predict(audio): if audio is None: return "No audio input detected", "" text = asr(audio)["text"] inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): logits = scam_model(**inputs).logits pred = torch.argmax(logits, dim=1).item() label = "Scam" if pred == 1 else "Not Scam" return text, label iface = gr.Interface( fn=transcribe_and_predict, inputs=gr.Audio(type="filepath"), outputs=["text", "text"], title="Thai Scam Detector with Speech-to-Text", description="อัปโหลดไฟล์เสียงเพื่อแปลงเป็นข้อความและตรวจสอบว่าหลอกลวงหรือไม่" ) if __name__ == "__main__": iface.launch()