Spaces:
Paused
Paused
| import pandas as pd | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| import seaborn as sns | |
| import json | |
| from pathlib import Path | |
| # Set style | |
| plt.style.use('ggplot') | |
| sns.set_palette("Set2") | |
| plt.rcParams['figure.figsize'] = (12, 8) | |
| # Load the data | |
| results_csv = "results/summary_20250421_230054.csv" | |
| results_json = "results/results_20250421_230054.json" | |
| df = pd.read_csv(results_csv) | |
| # Extract category from description if not already available | |
| def extract_category(row): | |
| """ | |
| Determines the category of an image based on its description or existing category. | |
| Args: | |
| row: A pandas DataFrame row containing 'category' and 'description' fields | |
| Returns: | |
| str: The determined category ('fashion', 'landscape', 'abstract', or 'unknown') | |
| """ | |
| if pd.notna(row['category']) and row['category'] != 'unknown': | |
| return row['category'] | |
| # Try to extract from description | |
| desc = row['description'].lower() | |
| if any(keyword in desc for keyword in ['coat', 'pants', 'shirt', 'dress', 'scarf', 'shoes']): | |
| return 'fashion' | |
| elif any(keyword in desc for keyword in ['forest', 'beach', 'mountain', 'ocean', 'lake', 'sky']): | |
| return 'landscape' | |
| elif any(keyword in desc for keyword in ['rectangle', 'circle', 'triangle', 'shape', 'spiral']): | |
| return 'abstract' | |
| else: | |
| return 'unknown' | |
| # Clean the data | |
| df['category'] = df.apply(extract_category, axis=1) | |
| df['generation_time'] = pd.to_numeric(df['generation_time'], errors='coerce') | |
| # 1. Model Performance Comparison | |
| def plot_model_comparison(): | |
| """ | |
| Creates boxplots comparing model performance across three metrics: | |
| VQA score, aesthetic score, and fidelity score. | |
| Saves the resulting plot to 'results/model_comparison.png'. | |
| """ | |
| fig, axes = plt.subplots(1, 3, figsize=(18, 6)) | |
| metrics = ['vqa_score', 'aesthetic_score', 'fidelity_score'] | |
| titles = ['VQA Score', 'Aesthetic Score', 'Fidelity Score'] | |
| for i, (metric, title) in enumerate(zip(metrics, titles)): | |
| sns.boxplot(x='model', y=metric, data=df, ax=axes[i]) | |
| axes[i].set_title(f'{title} by Model') | |
| axes[i].set_ylim([0, 1]) | |
| plt.tight_layout() | |
| plt.savefig('results/model_comparison.png') | |
| plt.close() | |
| # 2. Category Performance Analysis | |
| def plot_category_performance(): | |
| """ | |
| Creates boxplots showing performance by category and model for three metrics: | |
| VQA score, aesthetic score, and fidelity score. | |
| Saves the resulting plot to 'results/category_performance.png'. | |
| """ | |
| fig, axes = plt.subplots(1, 3, figsize=(18, 6)) | |
| metrics = ['vqa_score', 'aesthetic_score', 'fidelity_score'] | |
| titles = ['VQA Score', 'Aesthetic Score', 'Fidelity Score'] | |
| for i, (metric, title) in enumerate(zip(metrics, titles)): | |
| sns.boxplot(x='category', y=metric, hue='model', data=df, ax=axes[i]) | |
| axes[i].set_title(f'{title} by Category and Model') | |
| axes[i].set_ylim([0, 1]) | |
| if i > 0: | |
| axes[i].get_legend().remove() | |
| axes[0].legend(title='Model') | |
| plt.tight_layout() | |
| plt.savefig('results/category_performance.png') | |
| plt.close() | |
| # 3. Generation Time Analysis | |
| def plot_generation_time(): | |
| """ | |
| Creates visualizations of generation time analysis: | |
| 1. A boxplot showing generation time by model | |
| 2. Scatter plots showing the relationship between generation time and quality metrics | |
| Saves the resulting plots to 'results/generation_time.png' and 'results/quality_vs_time.png'. | |
| """ | |
| plt.figure(figsize=(10, 6)) | |
| sns.boxplot(x='model', y='generation_time', data=df) | |
| plt.title('Generation Time by Model') | |
| plt.ylabel('Time (seconds)') | |
| plt.tight_layout() | |
| plt.savefig('results/generation_time.png') | |
| plt.close() | |
| # Generation time vs quality scatter plot | |
| fig, axes = plt.subplots(1, 3, figsize=(18, 6)) | |
| metrics = ['vqa_score', 'aesthetic_score', 'fidelity_score'] | |
| titles = ['VQA Score', 'Aesthetic Score', 'Fidelity Score'] | |
| for i, (metric, title) in enumerate(zip(metrics, titles)): | |
| for model, color in zip(df['model'].unique(), ['#1f77b4', '#ff7f0e']): | |
| model_data = df[df['model'] == model] | |
| axes[i].scatter(model_data['generation_time'], model_data[metric], | |
| alpha=0.6, label=model, c=color) | |
| axes[i].set_title(f'{title} vs. Generation Time') | |
| axes[i].set_xlabel('Generation Time (seconds)') | |
| axes[i].set_ylabel(title) | |
| axes[i].legend() | |
| plt.tight_layout() | |
| plt.savefig('results/quality_vs_time.png') | |
| plt.close() | |
| # 4. Description complexity vs performance | |
| def plot_complexity_performance(): | |
| """ | |
| Analyzes the relationship between description complexity (word count) and | |
| performance metrics, creating scatter plots with trend lines. | |
| Saves the resulting plot to 'results/complexity_performance.png'. | |
| """ | |
| df['description_length'] = df['description'].str.len() | |
| df['word_count'] = df['description'].str.split().str.len() | |
| fig, axes = plt.subplots(1, 3, figsize=(18, 6)) | |
| metrics = ['vqa_score', 'aesthetic_score', 'fidelity_score'] | |
| titles = ['VQA Score', 'Aesthetic Score', 'Fidelity Score'] | |
| for i, (metric, title) in enumerate(zip(metrics, titles)): | |
| for model, color in zip(df['model'].unique(), ['#1f77b4', '#ff7f0e']): | |
| model_data = df[df['model'] == model] | |
| axes[i].scatter(model_data['word_count'], model_data[metric], | |
| alpha=0.6, label=model, c=color) | |
| # Add trendline | |
| z = np.polyfit(model_data['word_count'], model_data[metric], 1) | |
| p = np.poly1d(z) | |
| axes[i].plot(sorted(model_data['word_count']), p(sorted(model_data['word_count'])), | |
| c=color, linestyle='--') | |
| axes[i].set_title(f'{title} vs. Description Complexity') | |
| axes[i].set_xlabel('Word Count') | |
| axes[i].set_ylabel(title) | |
| axes[i].legend() | |
| plt.tight_layout() | |
| plt.savefig('results/complexity_performance.png') | |
| plt.close() | |
| # 5. Success and failure examples | |
| def analyze_best_worst_examples(): | |
| """ | |
| Identifies and prints the top 10 most successful and least successful generations | |
| based on fidelity score. | |
| Creates directories for sample SVG and PNG files if they don't exist. | |
| Returns: | |
| tuple: (success_df, failure_df) DataFrames containing the best and worst examples | |
| """ | |
| # Create directory for result samples | |
| Path("results/sample_svg").mkdir(exist_ok=True) | |
| Path("results/sample_png").mkdir(exist_ok=True) | |
| # Load detailed results | |
| with open(results_json, 'r') as f: | |
| results_data = json.load(f) | |
| # Create success/failure dataframes | |
| success_df = df.nlargest(10, 'fidelity_score') | |
| failure_df = df.nsmallest(10, 'fidelity_score') | |
| # Print success examples | |
| print("Top 10 Successful Generations:") | |
| print(success_df[['model', 'description', 'vqa_score', 'aesthetic_score', 'fidelity_score']].to_string(index=False)) | |
| # Print failure examples | |
| print("\nTop 10 Failed Generations:") | |
| print(failure_df[['model', 'description', 'vqa_score', 'aesthetic_score', 'fidelity_score']].to_string(index=False)) | |
| return success_df, failure_df | |
| # 6. Summary statistics | |
| def print_summary_stats(): | |
| """ | |
| Calculates and prints summary statistics for model performance: | |
| 1. Overall stats by model (mean, std, min, max for each metric) | |
| 2. Performance by category and model | |
| Also creates a radar chart visualizing fidelity scores by category and model, | |
| saved to 'results/category_radar.png'. | |
| """ | |
| # Overall stats by model | |
| model_stats = df.groupby('model').agg({ | |
| 'vqa_score': ['mean', 'std', 'min', 'max'], | |
| 'aesthetic_score': ['mean', 'std', 'min', 'max'], | |
| 'fidelity_score': ['mean', 'std', 'min', 'max'], | |
| 'generation_time': ['mean', 'std', 'min', 'max'] | |
| }) | |
| print("Overall Model Performance:") | |
| print(model_stats) | |
| # Stats by category and model | |
| category_stats = df.groupby(['model', 'category']).agg({ | |
| 'vqa_score': 'mean', | |
| 'aesthetic_score': 'mean', | |
| 'fidelity_score': 'mean', | |
| 'generation_time': 'mean' | |
| }).reset_index() | |
| print("\nPerformance by Category and Model:") | |
| print(category_stats.to_string()) | |
| # Create a radar chart for category performance | |
| categories = category_stats['category'].unique() | |
| models = category_stats['model'].unique() | |
| plt.figure(figsize=(10, 8)) | |
| angles = np.linspace(0, 2*np.pi, len(categories), endpoint=False).tolist() | |
| angles += angles[:1] # Close the loop | |
| ax = plt.subplot(111, polar=True) | |
| for model in models: | |
| model_data = category_stats[category_stats['model'] == model] | |
| values = [] | |
| for category in categories: | |
| cat_data = model_data[model_data['category'] == category] | |
| if not cat_data.empty: | |
| values.append(cat_data['fidelity_score'].values[0]) | |
| else: | |
| values.append(0) | |
| values += values[:1] # Close the loop | |
| ax.plot(angles, values, linewidth=2, label=model) | |
| ax.fill(angles, values, alpha=0.25) | |
| ax.set_xticks(angles[:-1]) | |
| ax.set_xticklabels(categories) | |
| ax.set_title('Fidelity Score by Category and Model') | |
| ax.legend(loc='upper right') | |
| plt.tight_layout() | |
| plt.savefig('results/category_radar.png') | |
| plt.close() | |
| # Main analysis function | |
| def run_analysis(): | |
| """ | |
| Main function that runs the complete analysis pipeline: | |
| 1. Creates necessary directories | |
| 2. Generates all visualization plots | |
| 3. Prints summary statistics | |
| 4. Analyzes best and worst examples | |
| All results are saved to the 'results/' directory. | |
| """ | |
| print("Starting analysis of evaluation results...") | |
| # Create plots directory if it doesn't exist | |
| Path("results").mkdir(exist_ok=True) | |
| # Generate all plots | |
| plot_model_comparison() | |
| plot_category_performance() | |
| plot_generation_time() | |
| plot_complexity_performance() | |
| # Print summary statistics | |
| print_summary_stats() | |
| # Analyze best and worst examples | |
| success_df, failure_df = analyze_best_worst_examples() | |
| print("\nAnalysis complete. Visualizations saved to 'results/' directory.") | |
| if __name__ == "__main__": | |
| run_analysis() |