|
import pandas as pd |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
import json |
|
from pathlib import Path |
|
|
|
|
|
plt.style.use('ggplot') |
|
sns.set_palette("Set2") |
|
plt.rcParams['figure.figsize'] = (12, 8) |
|
|
|
|
|
results_csv = "results/summary_20250421_230054.csv" |
|
results_json = "results/results_20250421_230054.json" |
|
|
|
df = pd.read_csv(results_csv) |
|
|
|
|
|
def extract_category(row): |
|
""" |
|
Determines the category of an image based on its description or existing category. |
|
|
|
Args: |
|
row: A pandas DataFrame row containing 'category' and 'description' fields |
|
|
|
Returns: |
|
str: The determined category ('fashion', 'landscape', 'abstract', or 'unknown') |
|
""" |
|
if pd.notna(row['category']) and row['category'] != 'unknown': |
|
return row['category'] |
|
|
|
|
|
desc = row['description'].lower() |
|
if any(keyword in desc for keyword in ['coat', 'pants', 'shirt', 'dress', 'scarf', 'shoes']): |
|
return 'fashion' |
|
elif any(keyword in desc for keyword in ['forest', 'beach', 'mountain', 'ocean', 'lake', 'sky']): |
|
return 'landscape' |
|
elif any(keyword in desc for keyword in ['rectangle', 'circle', 'triangle', 'shape', 'spiral']): |
|
return 'abstract' |
|
else: |
|
return 'unknown' |
|
|
|
|
|
df['category'] = df.apply(extract_category, axis=1) |
|
df['generation_time'] = pd.to_numeric(df['generation_time'], errors='coerce') |
|
|
|
|
|
def plot_model_comparison(): |
|
""" |
|
Creates boxplots comparing model performance across three metrics: |
|
VQA score, aesthetic score, and fidelity score. |
|
|
|
Saves the resulting plot to 'results/model_comparison.png'. |
|
""" |
|
fig, axes = plt.subplots(1, 3, figsize=(18, 6)) |
|
|
|
metrics = ['vqa_score', 'aesthetic_score', 'fidelity_score'] |
|
titles = ['VQA Score', 'Aesthetic Score', 'Fidelity Score'] |
|
|
|
for i, (metric, title) in enumerate(zip(metrics, titles)): |
|
sns.boxplot(x='model', y=metric, data=df, ax=axes[i]) |
|
axes[i].set_title(f'{title} by Model') |
|
axes[i].set_ylim([0, 1]) |
|
|
|
plt.tight_layout() |
|
plt.savefig('results/model_comparison.png') |
|
plt.close() |
|
|
|
|
|
def plot_category_performance(): |
|
""" |
|
Creates boxplots showing performance by category and model for three metrics: |
|
VQA score, aesthetic score, and fidelity score. |
|
|
|
Saves the resulting plot to 'results/category_performance.png'. |
|
""" |
|
fig, axes = plt.subplots(1, 3, figsize=(18, 6)) |
|
|
|
metrics = ['vqa_score', 'aesthetic_score', 'fidelity_score'] |
|
titles = ['VQA Score', 'Aesthetic Score', 'Fidelity Score'] |
|
|
|
for i, (metric, title) in enumerate(zip(metrics, titles)): |
|
sns.boxplot(x='category', y=metric, hue='model', data=df, ax=axes[i]) |
|
axes[i].set_title(f'{title} by Category and Model') |
|
axes[i].set_ylim([0, 1]) |
|
if i > 0: |
|
axes[i].get_legend().remove() |
|
|
|
axes[0].legend(title='Model') |
|
plt.tight_layout() |
|
plt.savefig('results/category_performance.png') |
|
plt.close() |
|
|
|
|
|
def plot_generation_time(): |
|
""" |
|
Creates visualizations of generation time analysis: |
|
1. A boxplot showing generation time by model |
|
2. Scatter plots showing the relationship between generation time and quality metrics |
|
|
|
Saves the resulting plots to 'results/generation_time.png' and 'results/quality_vs_time.png'. |
|
""" |
|
plt.figure(figsize=(10, 6)) |
|
sns.boxplot(x='model', y='generation_time', data=df) |
|
plt.title('Generation Time by Model') |
|
plt.ylabel('Time (seconds)') |
|
plt.tight_layout() |
|
plt.savefig('results/generation_time.png') |
|
plt.close() |
|
|
|
|
|
fig, axes = plt.subplots(1, 3, figsize=(18, 6)) |
|
|
|
metrics = ['vqa_score', 'aesthetic_score', 'fidelity_score'] |
|
titles = ['VQA Score', 'Aesthetic Score', 'Fidelity Score'] |
|
|
|
for i, (metric, title) in enumerate(zip(metrics, titles)): |
|
for model, color in zip(df['model'].unique(), ['#1f77b4', '#ff7f0e']): |
|
model_data = df[df['model'] == model] |
|
axes[i].scatter(model_data['generation_time'], model_data[metric], |
|
alpha=0.6, label=model, c=color) |
|
|
|
axes[i].set_title(f'{title} vs. Generation Time') |
|
axes[i].set_xlabel('Generation Time (seconds)') |
|
axes[i].set_ylabel(title) |
|
axes[i].legend() |
|
|
|
plt.tight_layout() |
|
plt.savefig('results/quality_vs_time.png') |
|
plt.close() |
|
|
|
|
|
def plot_complexity_performance(): |
|
""" |
|
Analyzes the relationship between description complexity (word count) and |
|
performance metrics, creating scatter plots with trend lines. |
|
|
|
Saves the resulting plot to 'results/complexity_performance.png'. |
|
""" |
|
df['description_length'] = df['description'].str.len() |
|
df['word_count'] = df['description'].str.split().str.len() |
|
|
|
fig, axes = plt.subplots(1, 3, figsize=(18, 6)) |
|
|
|
metrics = ['vqa_score', 'aesthetic_score', 'fidelity_score'] |
|
titles = ['VQA Score', 'Aesthetic Score', 'Fidelity Score'] |
|
|
|
for i, (metric, title) in enumerate(zip(metrics, titles)): |
|
for model, color in zip(df['model'].unique(), ['#1f77b4', '#ff7f0e']): |
|
model_data = df[df['model'] == model] |
|
axes[i].scatter(model_data['word_count'], model_data[metric], |
|
alpha=0.6, label=model, c=color) |
|
|
|
|
|
z = np.polyfit(model_data['word_count'], model_data[metric], 1) |
|
p = np.poly1d(z) |
|
axes[i].plot(sorted(model_data['word_count']), p(sorted(model_data['word_count'])), |
|
c=color, linestyle='--') |
|
|
|
axes[i].set_title(f'{title} vs. Description Complexity') |
|
axes[i].set_xlabel('Word Count') |
|
axes[i].set_ylabel(title) |
|
axes[i].legend() |
|
|
|
plt.tight_layout() |
|
plt.savefig('results/complexity_performance.png') |
|
plt.close() |
|
|
|
|
|
def analyze_best_worst_examples(): |
|
""" |
|
Identifies and prints the top 10 most successful and least successful generations |
|
based on fidelity score. |
|
|
|
Creates directories for sample SVG and PNG files if they don't exist. |
|
|
|
Returns: |
|
tuple: (success_df, failure_df) DataFrames containing the best and worst examples |
|
""" |
|
|
|
Path("results/sample_svg").mkdir(exist_ok=True) |
|
Path("results/sample_png").mkdir(exist_ok=True) |
|
|
|
|
|
with open(results_json, 'r') as f: |
|
results_data = json.load(f) |
|
|
|
|
|
success_df = df.nlargest(10, 'fidelity_score') |
|
failure_df = df.nsmallest(10, 'fidelity_score') |
|
|
|
|
|
print("Top 10 Successful Generations:") |
|
print(success_df[['model', 'description', 'vqa_score', 'aesthetic_score', 'fidelity_score']].to_string(index=False)) |
|
|
|
|
|
print("\nTop 10 Failed Generations:") |
|
print(failure_df[['model', 'description', 'vqa_score', 'aesthetic_score', 'fidelity_score']].to_string(index=False)) |
|
|
|
return success_df, failure_df |
|
|
|
|
|
def print_summary_stats(): |
|
""" |
|
Calculates and prints summary statistics for model performance: |
|
1. Overall stats by model (mean, std, min, max for each metric) |
|
2. Performance by category and model |
|
|
|
Also creates a radar chart visualizing fidelity scores by category and model, |
|
saved to 'results/category_radar.png'. |
|
""" |
|
|
|
model_stats = df.groupby('model').agg({ |
|
'vqa_score': ['mean', 'std', 'min', 'max'], |
|
'aesthetic_score': ['mean', 'std', 'min', 'max'], |
|
'fidelity_score': ['mean', 'std', 'min', 'max'], |
|
'generation_time': ['mean', 'std', 'min', 'max'] |
|
}) |
|
|
|
print("Overall Model Performance:") |
|
print(model_stats) |
|
|
|
|
|
category_stats = df.groupby(['model', 'category']).agg({ |
|
'vqa_score': 'mean', |
|
'aesthetic_score': 'mean', |
|
'fidelity_score': 'mean', |
|
'generation_time': 'mean' |
|
}).reset_index() |
|
|
|
print("\nPerformance by Category and Model:") |
|
print(category_stats.to_string()) |
|
|
|
|
|
categories = category_stats['category'].unique() |
|
models = category_stats['model'].unique() |
|
|
|
plt.figure(figsize=(10, 8)) |
|
angles = np.linspace(0, 2*np.pi, len(categories), endpoint=False).tolist() |
|
angles += angles[:1] |
|
|
|
ax = plt.subplot(111, polar=True) |
|
|
|
for model in models: |
|
model_data = category_stats[category_stats['model'] == model] |
|
values = [] |
|
for category in categories: |
|
cat_data = model_data[model_data['category'] == category] |
|
if not cat_data.empty: |
|
values.append(cat_data['fidelity_score'].values[0]) |
|
else: |
|
values.append(0) |
|
values += values[:1] |
|
|
|
ax.plot(angles, values, linewidth=2, label=model) |
|
ax.fill(angles, values, alpha=0.25) |
|
|
|
ax.set_xticks(angles[:-1]) |
|
ax.set_xticklabels(categories) |
|
ax.set_title('Fidelity Score by Category and Model') |
|
ax.legend(loc='upper right') |
|
|
|
plt.tight_layout() |
|
plt.savefig('results/category_radar.png') |
|
plt.close() |
|
|
|
|
|
def run_analysis(): |
|
""" |
|
Main function that runs the complete analysis pipeline: |
|
1. Creates necessary directories |
|
2. Generates all visualization plots |
|
3. Prints summary statistics |
|
4. Analyzes best and worst examples |
|
|
|
All results are saved to the 'results/' directory. |
|
""" |
|
print("Starting analysis of evaluation results...") |
|
|
|
|
|
Path("results").mkdir(exist_ok=True) |
|
|
|
|
|
plot_model_comparison() |
|
plot_category_performance() |
|
plot_generation_time() |
|
plot_complexity_performance() |
|
|
|
|
|
print_summary_stats() |
|
|
|
|
|
success_df, failure_df = analyze_best_worst_examples() |
|
|
|
print("\nAnalysis complete. Visualizations saved to 'results/' directory.") |
|
|
|
if __name__ == "__main__": |
|
run_analysis() |