Spaces:
Paused
Paused
| """ | |
| A model worker executes the model. | |
| """ | |
| import argparse | |
| import asyncio | |
| import json | |
| import time | |
| import threading | |
| import uuid | |
| from fastapi import FastAPI, Request, BackgroundTasks | |
| from fastapi.responses import StreamingResponse | |
| import requests | |
| import torch | |
| import uvicorn | |
| from functools import partial | |
| from starvector.serve.constants import WORKER_HEART_BEAT_INTERVAL, CLIP_QUERY_LENGTH | |
| from starvector.serve.util import (build_logger, server_error_msg, | |
| pretty_print_semaphore) | |
| from starvector.serve.util import process_images, load_image_from_base64 | |
| from threading import Thread | |
| from transformers import TextIteratorStreamer | |
| from openai import OpenAI | |
| GB = 1 << 30 | |
| worker_id = str(uuid.uuid4())[:6] | |
| logger = build_logger("model_worker", f"model_worker_{worker_id}.log") | |
| global_counter = 0 | |
| model_semaphore = None | |
| def heart_beat_worker(controller): | |
| while True: | |
| time.sleep(WORKER_HEART_BEAT_INTERVAL) | |
| controller.send_heart_beat() | |
| class ModelWorker: | |
| def __init__(self, controller_addr, worker_addr, vllm_base_url, | |
| worker_id, no_register, model_name, openai_api_key): | |
| self.controller_addr = controller_addr | |
| self.worker_addr = worker_addr | |
| self.worker_id = worker_id | |
| self.vllm_base_url = vllm_base_url | |
| self.model_name = model_name | |
| self.openai_api_key = openai_api_key | |
| self.client = OpenAI( | |
| api_key=openai_api_key, | |
| base_url=vllm_base_url, | |
| ) | |
| if "text2svg" in self.model_name.lower(): | |
| self.task = "Text2SVG" | |
| elif "im2svg" in self.model_name.lower(): | |
| self.task = "Image2SVG" | |
| logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...") | |
| self.is_multimodal = 'starvector' in self.model_name.lower() | |
| if not no_register: | |
| self.register_to_controller() | |
| self.heart_beat_thread = threading.Thread( | |
| target=heart_beat_worker, args=(self,)) | |
| self.heart_beat_thread.start() | |
| def register_to_controller(self): | |
| logger.info("Register to controller") | |
| url = self.controller_addr + "/register_worker" | |
| data = { | |
| "worker_name": self.worker_addr, | |
| "check_heart_beat": True, | |
| "worker_status": self.get_status() | |
| } | |
| r = requests.post(url, json=data) | |
| assert r.status_code == 200 | |
| def send_heart_beat(self): | |
| logger.info(f"Send heart beat. Models: {[self.model_name]}. " | |
| f"Semaphore: {pretty_print_semaphore(model_semaphore)}. " | |
| f"global_counter: {global_counter}") | |
| url = self.controller_addr + "/receive_heart_beat" | |
| while True: | |
| try: | |
| ret = requests.post(url, json={ | |
| "worker_name": self.worker_addr, | |
| "queue_length": self.get_queue_length()}, timeout=30) | |
| exist = ret.json()["exist"] | |
| break | |
| except requests.exceptions.RequestException as e: | |
| logger.error(f"heart beat error: {e}") | |
| time.sleep(5) | |
| if not exist: | |
| self.register_to_controller() | |
| def get_queue_length(self): | |
| if model_semaphore is None: | |
| return 0 | |
| else: | |
| return args.limit_model_concurrency - model_semaphore._value + (len( | |
| model_semaphore._waiters) if model_semaphore._waiters is not None else 0) | |
| def get_status(self): | |
| return { | |
| "model_names": [self.model_name], | |
| "speed": 1, | |
| "queue_length": self.get_queue_length(), | |
| } | |
| def generate_stream(self, params): | |
| num_beams = int(params.get("num_beams", 1)) | |
| temperature = float(params.get("temperature", 1.0)) | |
| len_penalty = float(params.get("len_penalty", 1.0)) | |
| top_p = float(params.get("top_p", 1.0)) | |
| max_context_length = 1000 | |
| # prompt = params["prompt"] | |
| prompt = "<svg " | |
| if self.task == "Image2SVG": | |
| images = params.get("images", []) | |
| # Get the first image if available, otherwise None | |
| image_base_64 = images[0] if images and len(images) > 0 else None | |
| if not image_base_64: | |
| yield json.dumps({"text": "Error: No image provided for Image2SVG task", "error_code": 1}).encode() + b"\0" | |
| return | |
| max_new_tokens = min(int(params.get("max_new_tokens", 256)), 8192) | |
| max_new_tokens = min(max_new_tokens, max_context_length - CLIP_QUERY_LENGTH) | |
| # Use the chat completions endpoint | |
| vllm_endpoint = f"{self.vllm_base_url}/v1/chat/completions" | |
| # Use a model name that vLLM recognizes | |
| # The full path including the organization is important | |
| model_name_for_vllm = params['model'] | |
| # Format payload for the chat completions endpoint | |
| request_payload = { | |
| "model": model_name_for_vllm, | |
| "messages": [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "text", "text": "<image-start>"}, | |
| {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base_64}"}} | |
| ] | |
| } | |
| ], | |
| "max_tokens": 7500, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "stream": True | |
| } | |
| # Log the request for debugging | |
| logger.info(f"Request to vLLM: {vllm_endpoint}") | |
| logger.info(f"Using model: {model_name_for_vllm}") | |
| # Use requests instead of OpenAI client | |
| response = requests.post( | |
| vllm_endpoint, | |
| json=request_payload, | |
| stream=True, | |
| headers={"Content-Type": "application/json"} | |
| ) | |
| # Log the response status for debugging | |
| logger.info(f"Response status: {response.status_code}") | |
| if response.status_code != 200: | |
| try: | |
| error_detail = response.json() | |
| logger.error(f"Error from vLLM server: {error_detail}") | |
| except json.JSONDecodeError: | |
| logger.error(f"Error from vLLM server: {response.text}") | |
| yield json.dumps({"text": f"Error communicating with model server: {response.status_code}", "error_code": 1}).encode() + b"\0" | |
| return | |
| # Process the streaming response | |
| output_text = "" | |
| for line in response.iter_lines(): | |
| if line: | |
| # Skip the "data: " prefix if present | |
| if line.startswith(b"data: "): | |
| line = line[6:] | |
| if line.strip() == b"[DONE]": | |
| break | |
| try: | |
| data = json.loads(line) | |
| if "choices" in data and len(data["choices"]) > 0: | |
| delta = data["choices"][0].get("delta", {}) | |
| content = delta.get("content", "") | |
| if content: | |
| output_text += content | |
| yield json.dumps({"text": output_text, "error_code": 0}).encode() + b"\0" | |
| except json.JSONDecodeError: | |
| logger.error(f"Failed to parse line as JSON: {line}") | |
| continue | |
| # Send final output if not already sent | |
| if output_text: | |
| yield json.dumps({"text": output_text, "error_code": 0}).encode() + b"\0" | |
| elif self.task == "Text2SVG": | |
| # Implementation for Text2SVG task would go here | |
| yield json.dumps({"text": "Text2SVG task not implemented yet", "error_code": 1}).encode() + b"\0" | |
| return | |
| def generate_stream_gate(self, params): | |
| try: | |
| for x in self.generate_stream(params): | |
| yield x | |
| except ValueError as e: | |
| print("Caught ValueError:", e) | |
| ret = { | |
| "text": server_error_msg, | |
| "error_code": 1, | |
| } | |
| yield json.dumps(ret).encode() + b"\0" | |
| except torch.cuda.CudaError as e: | |
| print("Caught torch.cuda.CudaError:", e) | |
| ret = { | |
| "text": server_error_msg, | |
| "error_code": 1, | |
| } | |
| yield json.dumps(ret).encode() + b"\0" | |
| except Exception as e: | |
| print("Caught Unknown Error", e) | |
| ret = { | |
| "text": server_error_msg, | |
| "error_code": 1, | |
| } | |
| yield json.dumps(ret).encode() + b"\0" | |
| app = FastAPI() | |
| def release_model_semaphore(fn=None): | |
| model_semaphore.release() | |
| if fn is not None: | |
| fn() | |
| async def generate_stream(request: Request): | |
| global model_semaphore, global_counter | |
| global_counter += 1 | |
| params = await request.json() | |
| if model_semaphore is None: | |
| model_semaphore = asyncio.Semaphore(args.limit_model_concurrency) | |
| await model_semaphore.acquire() | |
| worker.send_heart_beat() | |
| generator = worker.generate_stream_gate(params) | |
| background_tasks = BackgroundTasks() | |
| background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat)) | |
| return StreamingResponse(generator, background=background_tasks) | |
| async def get_status(request: Request): | |
| return worker.get_status() | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--host", type=str, default="localhost") | |
| parser.add_argument("--port", type=int, default=21002) | |
| parser.add_argument("--worker-address", type=str, | |
| default="http://localhost:21002") | |
| parser.add_argument("--controller-address", type=str, | |
| default="http://localhost:21001") | |
| parser.add_argument("--model-name", type=str) | |
| parser.add_argument("--multi-modal", action="store_true", help="Multimodal mode is automatically detected with model name, please make sure `starvector` is included in the model path.") | |
| parser.add_argument("--limit-model-concurrency", type=int, default=5) | |
| parser.add_argument("--stream-interval", type=int, default=1) | |
| parser.add_argument("--no-register", action="store_true") | |
| parser.add_argument("--openai-api-key", type=str, default="EMPTY") | |
| parser.add_argument("--vllm-base-url", type=str, default="http://localhost:8000") | |
| args = parser.parse_args() | |
| logger.info(f"args: {args}") | |
| if args.multi_modal: | |
| logger.warning("Multimodal mode is automatically detected with model name, please make sure `starvector` is included in the model path.") | |
| worker = ModelWorker(args.controller_address, | |
| args.worker_address, | |
| args.vllm_base_url, | |
| worker_id, | |
| args.no_register, | |
| args.model_name, | |
| args.openai_api_key, | |
| ) | |
| uvicorn.run(app, host=args.host, port=args.port, log_level="info") |