Spaces:
				
			
			
	
			
			
		Paused
		
	
	
	
			
			
	
	
	
	
		
		
		Paused
		
	| # Adapted from LAVIS-Salesforce: LAVIS/lavis/models/clip_vit.py | |
| from collections import OrderedDict | |
| from itertools import repeat | |
| import collections.abc | |
| import math | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper | |
| def convert_weights_to_precision(model: nn.Module, precision: torch.dtype): | |
| """Convert applicable model parameters to the specified precision""" | |
| def _convert_weights_to_precision(l): | |
| if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): | |
| l.weight.data = l.weight.data.to(precision) | |
| if l.bias is not None: | |
| l.bias.data = l.bias.data.to(precision) | |
| elif isinstance(l, (nn.MultiheadAttention)): | |
| for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: | |
| tensor = getattr(l, attr) | |
| if tensor is not None: | |
| tensor.data = tensor.data.to(precision) | |
| else: | |
| for _, p in l.named_parameters(): | |
| p.data = p.data.to(precision) | |
| model.apply(_convert_weights_to_precision) | |
| class Bottleneck(nn.Module): | |
| expansion = 4 | |
| def __init__(self, inplanes, planes, stride=1): | |
| super().__init__() | |
| # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 | |
| self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) | |
| self.bn1 = nn.BatchNorm2d(planes) | |
| self.relu1 = nn.ReLU(inplace=True) | |
| self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) | |
| self.bn2 = nn.BatchNorm2d(planes) | |
| self.relu2 = nn.ReLU(inplace=True) | |
| self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() | |
| self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) | |
| self.bn3 = nn.BatchNorm2d(planes * self.expansion) | |
| self.relu3 = nn.ReLU(inplace=True) | |
| self.downsample = None | |
| self.stride = stride | |
| if stride > 1 or inplanes != planes * Bottleneck.expansion: | |
| # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 | |
| self.downsample = nn.Sequential(OrderedDict([ | |
| ("-1", nn.AvgPool2d(stride)), | |
| ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), | |
| ("1", nn.BatchNorm2d(planes * self.expansion)) | |
| ])) | |
| def forward(self, x: torch.Tensor): | |
| identity = x | |
| out = self.relu1(self.bn1(self.conv1(x))) | |
| out = self.relu2(self.bn2(self.conv2(out))) | |
| out = self.avgpool(out) | |
| out = self.bn3(self.conv3(out)) | |
| if self.downsample is not None: | |
| identity = self.downsample(x) | |
| out += identity | |
| out = self.relu3(out) | |
| return out | |
| class AttentionPool2d(nn.Module): | |
| def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): | |
| super().__init__() | |
| self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) | |
| self.k_proj = nn.Linear(embed_dim, embed_dim) | |
| self.q_proj = nn.Linear(embed_dim, embed_dim) | |
| self.v_proj = nn.Linear(embed_dim, embed_dim) | |
| self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) | |
| self.num_heads = num_heads | |
| def forward(self, x): | |
| x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC | |
| x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC | |
| x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC | |
| x, _ = F.multi_head_attention_forward( | |
| query=x, key=x, value=x, | |
| embed_dim_to_check=x.shape[-1], | |
| num_heads=self.num_heads, | |
| q_proj_weight=self.q_proj.weight, | |
| k_proj_weight=self.k_proj.weight, | |
| v_proj_weight=self.v_proj.weight, | |
| in_proj_weight=None, | |
| in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), | |
| bias_k=None, | |
| bias_v=None, | |
| add_zero_attn=False, | |
| dropout_p=0, | |
| out_proj_weight=self.c_proj.weight, | |
| out_proj_bias=self.c_proj.bias, | |
| use_separate_proj_weight=True, | |
| training=self.training, | |
| need_weights=False | |
| ) | |
| return x[0] | |
| class LayerNorm(nn.LayerNorm): | |
| """Subclass torch's LayerNorm to handle fp16.""" | |
| def forward(self, x: torch.Tensor): | |
| orig_type = x.dtype | |
| layernorm_dtype = self.weight.dtype | |
| ret = super().forward(x.type(layernorm_dtype)) | |
| return ret.type(orig_type) | |
| class QuickGELU(nn.Module): | |
| def forward(self, x: torch.Tensor): | |
| return x * torch.sigmoid(1.702 * x) | |
| class ResidualAttentionBlock(nn.Module): | |
| def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, use_grad_checkpointing=False): | |
| super().__init__() | |
| self.attn = nn.MultiheadAttention(d_model, n_head) | |
| self.ln_1 = LayerNorm(d_model) | |
| self.mlp = nn.Sequential(OrderedDict([ | |
| ("c_fc", nn.Linear(d_model, d_model * 4)), | |
| ("gelu", QuickGELU()), | |
| ("c_proj", nn.Linear(d_model * 4, d_model)) | |
| ])) | |
| self.ln_2 = LayerNorm(d_model) | |
| self.attn_mask = attn_mask | |
| if use_grad_checkpointing: | |
| self.attn = checkpoint_wrapper(self.attn) | |
| self.mlp = checkpoint_wrapper(self.mlp) | |
| def attention(self, x: torch.Tensor): | |
| self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None | |
| return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] | |
| def forward(self, x: torch.Tensor): | |
| x = x + self.attention(self.ln_1(x)) | |
| x = x + self.mlp(self.ln_2(x)) | |
| return x | |
| class Transformer(nn.Module): | |
| def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None, use_grad_checkpointing=False): | |
| super().__init__() | |
| self.width = width | |
| self.layers = layers | |
| self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask, use_grad_checkpointing and i>12) for i in range(layers)]) | |
| def forward(self, x: torch.Tensor): | |
| return self.resblocks(x) | |
| class VisionTransformer(nn.Module): | |
| def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, use_grad_checkpointing: bool): | |
| super().__init__() | |
| self.input_resolution = input_resolution | |
| self.num_features = width | |
| self.num_heads = heads | |
| self.num_patches = (input_resolution // patch_size) ** 2 | |
| self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) | |
| scale = width ** -0.5 | |
| self.class_embedding = nn.Parameter(scale * torch.randn(width)) | |
| self.positional_embedding = nn.Parameter(scale * torch.randn(self.num_patches + 1, width)) | |
| self.ln_pre = LayerNorm(width) | |
| self.transformer = Transformer(width, layers, heads, use_grad_checkpointing=use_grad_checkpointing) | |
| def forward(self, x: torch.Tensor): | |
| x = self.conv1(x) # shape = [*, width, grid, grid] | |
| x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] | |
| x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] | |
| x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] | |
| x = x + self.positional_embedding.to(x.dtype) | |
| x = self.ln_pre(x) | |
| x = x.permute(1, 0, 2) # NLD -> LND | |
| x = self.transformer(x) | |
| x = x.permute(1, 0, 2) # LND -> NLD | |
| return x | |