Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tempfile
|
| 2 |
+
import itertools
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from __init__ import *
|
| 5 |
+
from llama_cpp import Llama
|
| 6 |
+
from chromadb.config import Settings
|
| 7 |
+
from typing import List, Optional, Union
|
| 8 |
+
from langchain.vectorstores import Chroma
|
| 9 |
+
from langchain.docstore.document import Document
|
| 10 |
+
from huggingface_hub.file_download import http_get
|
| 11 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 12 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class LocalChatGPT:
|
| 16 |
+
def __init__(self):
|
| 17 |
+
self.llama_model: Optional[Llama] = None
|
| 18 |
+
self.embeddings: HuggingFaceEmbeddings = self.initialize_app()
|
| 19 |
+
|
| 20 |
+
def initialize_app(self) -> HuggingFaceEmbeddings:
|
| 21 |
+
"""
|
| 22 |
+
Загружаем все модели из списка.
|
| 23 |
+
:return:
|
| 24 |
+
"""
|
| 25 |
+
os.makedirs(MODELS_DIR, exist_ok=True)
|
| 26 |
+
model_url, model_name = list(DICT_REPO_AND_MODELS.items())[0]
|
| 27 |
+
final_model_path = os.path.join(MODELS_DIR, model_name)
|
| 28 |
+
os.makedirs("/".join(final_model_path.split("/")[:-1]), exist_ok=True)
|
| 29 |
+
|
| 30 |
+
if not os.path.exists(final_model_path):
|
| 31 |
+
with open(final_model_path, "wb") as f:
|
| 32 |
+
http_get(model_url, f)
|
| 33 |
+
|
| 34 |
+
self.llama_model = Llama(
|
| 35 |
+
model_path=final_model_path,
|
| 36 |
+
n_ctx=2000,
|
| 37 |
+
n_parts=1,
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
return HuggingFaceEmbeddings(model_name=EMBEDDER_NAME, cache_folder=MODELS_DIR)
|
| 41 |
+
|
| 42 |
+
def load_model(self, model_name):
|
| 43 |
+
"""
|
| 44 |
+
|
| 45 |
+
:param model_name:
|
| 46 |
+
:return:
|
| 47 |
+
"""
|
| 48 |
+
final_model_path = os.path.join(MODELS_DIR, model_name)
|
| 49 |
+
os.makedirs("/".join(final_model_path.split("/")[:-1]), exist_ok=True)
|
| 50 |
+
|
| 51 |
+
if not os.path.exists(final_model_path):
|
| 52 |
+
with open(final_model_path, "wb") as f:
|
| 53 |
+
if model_url := [i for i in DICT_REPO_AND_MODELS if DICT_REPO_AND_MODELS[i] == model_name]:
|
| 54 |
+
http_get(model_url[0], f)
|
| 55 |
+
|
| 56 |
+
self.llama_model = Llama(
|
| 57 |
+
model_path=final_model_path,
|
| 58 |
+
n_ctx=2000,
|
| 59 |
+
n_parts=1,
|
| 60 |
+
)
|
| 61 |
+
return model_name
|
| 62 |
+
|
| 63 |
+
@staticmethod
|
| 64 |
+
def load_single_document(file_path: str) -> Document:
|
| 65 |
+
"""
|
| 66 |
+
Загружаем один документ.
|
| 67 |
+
:param file_path:
|
| 68 |
+
:return:
|
| 69 |
+
"""
|
| 70 |
+
ext: str = "." + file_path.rsplit(".", 1)[-1]
|
| 71 |
+
assert ext in LOADER_MAPPING
|
| 72 |
+
loader_class, loader_args = LOADER_MAPPING[ext]
|
| 73 |
+
loader = loader_class(file_path, **loader_args)
|
| 74 |
+
return loader.load()[0]
|
| 75 |
+
|
| 76 |
+
@staticmethod
|
| 77 |
+
def get_message_tokens(model: Llama, role: str, content: str) -> list:
|
| 78 |
+
"""
|
| 79 |
+
|
| 80 |
+
:param model:
|
| 81 |
+
:param role:
|
| 82 |
+
:param content:
|
| 83 |
+
:return:
|
| 84 |
+
"""
|
| 85 |
+
message_tokens: list = model.tokenize(content.encode("utf-8"))
|
| 86 |
+
message_tokens.insert(1, ROLE_TOKENS[role])
|
| 87 |
+
message_tokens.insert(2, LINEBREAK_TOKEN)
|
| 88 |
+
message_tokens.append(model.token_eos())
|
| 89 |
+
return message_tokens
|
| 90 |
+
|
| 91 |
+
def get_system_tokens(self, model: Llama) -> list:
|
| 92 |
+
"""
|
| 93 |
+
|
| 94 |
+
:param model:
|
| 95 |
+
:return:
|
| 96 |
+
"""
|
| 97 |
+
system_message: dict = {"role": "system", "content": SYSTEM_PROMPT}
|
| 98 |
+
return self.get_message_tokens(model, **system_message)
|
| 99 |
+
|
| 100 |
+
@staticmethod
|
| 101 |
+
def upload_files(files: List[tempfile.TemporaryFile]) -> List[str]:
|
| 102 |
+
"""
|
| 103 |
+
|
| 104 |
+
:param files:
|
| 105 |
+
:return:
|
| 106 |
+
"""
|
| 107 |
+
return [f.name for f in files]
|
| 108 |
+
|
| 109 |
+
@staticmethod
|
| 110 |
+
def process_text(text: str) -> Optional[str]:
|
| 111 |
+
"""
|
| 112 |
+
|
| 113 |
+
:param text:
|
| 114 |
+
:return:
|
| 115 |
+
"""
|
| 116 |
+
lines: list = text.split("\n")
|
| 117 |
+
lines = [line for line in lines if len(line.strip()) > 2]
|
| 118 |
+
text = "\n".join(lines).strip()
|
| 119 |
+
return None if len(text) < 10 else text
|
| 120 |
+
|
| 121 |
+
@staticmethod
|
| 122 |
+
def update_text_db(
|
| 123 |
+
db: Optional[Chroma],
|
| 124 |
+
fixed_documents: List[Document],
|
| 125 |
+
ids: List[str]
|
| 126 |
+
) -> Union[Optional[Chroma], str]:
|
| 127 |
+
if db:
|
| 128 |
+
data: dict = db.get()
|
| 129 |
+
files_db = {dict_data['source'].split('/')[-1] for dict_data in data["metadatas"]}
|
| 130 |
+
files_load = {dict_data.metadata["source"].split('/')[-1] for dict_data in fixed_documents}
|
| 131 |
+
if files_load == files_db:
|
| 132 |
+
# db.delete([item for item in data['ids'] if item not in ids])
|
| 133 |
+
# db.update_documents(ids, fixed_documents)
|
| 134 |
+
|
| 135 |
+
db.delete(data['ids'])
|
| 136 |
+
db.add_texts(
|
| 137 |
+
texts=[doc.page_content for doc in fixed_documents],
|
| 138 |
+
metadatas=[doc.metadata for doc in fixed_documents],
|
| 139 |
+
ids=ids
|
| 140 |
+
)
|
| 141 |
+
file_warning = f"Загружено {len(fixed_documents)} фрагментов! Можно задавать вопросы."
|
| 142 |
+
return db, file_warning
|
| 143 |
+
|
| 144 |
+
def build_index(
|
| 145 |
+
self,
|
| 146 |
+
file_paths: List[str],
|
| 147 |
+
db: Optional[Chroma],
|
| 148 |
+
chunk_size: int,
|
| 149 |
+
chunk_overlap: int
|
| 150 |
+
):
|
| 151 |
+
"""
|
| 152 |
+
|
| 153 |
+
:param file_paths:
|
| 154 |
+
:param db:
|
| 155 |
+
:param chunk_size:
|
| 156 |
+
:param chunk_overlap:
|
| 157 |
+
:return:
|
| 158 |
+
"""
|
| 159 |
+
documents: List[Document] = [self.load_single_document(path) for path in file_paths]
|
| 160 |
+
text_splitter: RecursiveCharacterTextSplitter = RecursiveCharacterTextSplitter(
|
| 161 |
+
chunk_size=chunk_size, chunk_overlap=chunk_overlap
|
| 162 |
+
)
|
| 163 |
+
documents = text_splitter.split_documents(documents)
|
| 164 |
+
fixed_documents: List[Document] = []
|
| 165 |
+
for doc in documents:
|
| 166 |
+
doc.page_content = self.process_text(doc.page_content)
|
| 167 |
+
if not doc.page_content:
|
| 168 |
+
continue
|
| 169 |
+
fixed_documents.append(doc)
|
| 170 |
+
|
| 171 |
+
ids: List[str] = [
|
| 172 |
+
f"{path.split('/')[-1].replace('.txt', '')}{i}"
|
| 173 |
+
for path, i in itertools.product(file_paths, range(1, len(fixed_documents) + 1))
|
| 174 |
+
]
|
| 175 |
+
|
| 176 |
+
self.update_text_db(db, fixed_documents, ids)
|
| 177 |
+
|
| 178 |
+
db = Chroma.from_documents(
|
| 179 |
+
documents=fixed_documents,
|
| 180 |
+
embedding=self.embeddings,
|
| 181 |
+
ids=ids,
|
| 182 |
+
client_settings=Settings(
|
| 183 |
+
anonymized_telemetry=False,
|
| 184 |
+
persist_directory="db"
|
| 185 |
+
)
|
| 186 |
+
)
|
| 187 |
+
file_warning = f"Загружено {len(fixed_documents)} фрагментов! Можно задавать вопросы."
|
| 188 |
+
return db, file_warning
|
| 189 |
+
|
| 190 |
+
@staticmethod
|
| 191 |
+
def user(message, history):
|
| 192 |
+
new_history = history + [[message, None]]
|
| 193 |
+
return "", new_history
|
| 194 |
+
|
| 195 |
+
@staticmethod
|
| 196 |
+
def regenerate_response(history):
|
| 197 |
+
"""
|
| 198 |
+
|
| 199 |
+
:param history:
|
| 200 |
+
:return:
|
| 201 |
+
"""
|
| 202 |
+
return "", history
|
| 203 |
+
|
| 204 |
+
@staticmethod
|
| 205 |
+
def retrieve(history, db: Optional[Chroma], retrieved_docs):
|
| 206 |
+
"""
|
| 207 |
+
|
| 208 |
+
:param history:
|
| 209 |
+
:param db:
|
| 210 |
+
:param retrieved_docs:
|
| 211 |
+
:return:
|
| 212 |
+
"""
|
| 213 |
+
if db:
|
| 214 |
+
last_user_message = history[-1][0]
|
| 215 |
+
try:
|
| 216 |
+
docs = db.similarity_search(last_user_message, k=4)
|
| 217 |
+
# retriever = db.as_retriever(search_kwargs={"k": k_documents})
|
| 218 |
+
# docs = retriever.get_relevant_documents(last_user_message)
|
| 219 |
+
except RuntimeError:
|
| 220 |
+
docs = db.similarity_search(last_user_message, k=1)
|
| 221 |
+
# retriever = db.as_retriever(search_kwargs={"k": 1})
|
| 222 |
+
# docs = retriever.get_relevant_documents(last_user_message)
|
| 223 |
+
source_docs = set()
|
| 224 |
+
for doc in docs:
|
| 225 |
+
for content in doc.metadata.values():
|
| 226 |
+
source_docs.add(content.split("/")[-1])
|
| 227 |
+
retrieved_docs = "\n\n".join([doc.page_content for doc in docs])
|
| 228 |
+
retrieved_docs = f"Документ - {''.join(list(source_docs))}.\n\n{retrieved_docs}"
|
| 229 |
+
return retrieved_docs
|
| 230 |
+
|
| 231 |
+
def bot(self, history, retrieved_docs):
|
| 232 |
+
"""
|
| 233 |
+
|
| 234 |
+
:param history:
|
| 235 |
+
:param retrieved_docs:
|
| 236 |
+
:return:
|
| 237 |
+
"""
|
| 238 |
+
if not history:
|
| 239 |
+
return
|
| 240 |
+
tokens = self.get_system_tokens(self.llama_model)[:]
|
| 241 |
+
tokens.append(LINEBREAK_TOKEN)
|
| 242 |
+
|
| 243 |
+
for user_message, bot_message in history[:-1]:
|
| 244 |
+
message_tokens = self.get_message_tokens(model=self.llama_model, role="user", content=user_message)
|
| 245 |
+
tokens.extend(message_tokens)
|
| 246 |
+
|
| 247 |
+
last_user_message = history[-1][0]
|
| 248 |
+
if retrieved_docs:
|
| 249 |
+
last_user_message = f"Контекст: {retrieved_docs}\n\nИспользуя контекст, ответь на вопрос: " \
|
| 250 |
+
f"{last_user_message}"
|
| 251 |
+
message_tokens = self.get_message_tokens(model=self.llama_model, role="user", content=last_user_message)
|
| 252 |
+
tokens.extend(message_tokens)
|
| 253 |
+
|
| 254 |
+
role_tokens = [self.llama_model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN]
|
| 255 |
+
tokens.extend(role_tokens)
|
| 256 |
+
generator = self.llama_model.generate(
|
| 257 |
+
tokens,
|
| 258 |
+
top_k=30,
|
| 259 |
+
top_p=0.9,
|
| 260 |
+
temp=0.1
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
partial_text = ""
|
| 264 |
+
for i, token in enumerate(generator):
|
| 265 |
+
if token == self.llama_model.token_eos() or (MAX_NEW_TOKENS is not None and i >= MAX_NEW_TOKENS):
|
| 266 |
+
break
|
| 267 |
+
partial_text += self.llama_model.detokenize([token]).decode("utf-8", "ignore")
|
| 268 |
+
history[-1][1] = partial_text
|
| 269 |
+
yield history
|
| 270 |
+
|
| 271 |
+
def run(self):
|
| 272 |
+
"""
|
| 273 |
+
|
| 274 |
+
:return:
|
| 275 |
+
"""
|
| 276 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=BLOCK_CSS) as demo:
|
| 277 |
+
db: Optional[Chroma] = gr.State(None)
|
| 278 |
+
favicon = f'<img src="{FAVICON_PATH}" width="48px" style="display: inline">'
|
| 279 |
+
gr.Markdown(
|
| 280 |
+
f"""<h1><center>{favicon} Я, Макар - текстовый ассистент на основе GPT</center></h1>"""
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
with gr.Row(elem_id="model_selector_row"):
|
| 284 |
+
models: list = list(DICT_REPO_AND_MODELS.values())
|
| 285 |
+
model_selector = gr.Dropdown(
|
| 286 |
+
choices=models,
|
| 287 |
+
value=models[0] if models else "",
|
| 288 |
+
interactive=True,
|
| 289 |
+
show_label=False,
|
| 290 |
+
container=False,
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
with gr.Row():
|
| 294 |
+
with gr.Column(scale=5):
|
| 295 |
+
chatbot = gr.Chatbot(label="Диалог", height=400)
|
| 296 |
+
with gr.Column(min_width=200, scale=4):
|
| 297 |
+
retrieved_docs = gr.Textbox(
|
| 298 |
+
label="Извлеченные фрагменты",
|
| 299 |
+
placeholder="Появятся после задавания вопросов",
|
| 300 |
+
interactive=False
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
with gr.Row():
|
| 304 |
+
with gr.Column(scale=20):
|
| 305 |
+
msg = gr.Textbox(
|
| 306 |
+
label="Отправить сообщение",
|
| 307 |
+
show_label=False,
|
| 308 |
+
placeholder="Отправить сообщение",
|
| 309 |
+
container=False
|
| 310 |
+
)
|
| 311 |
+
with gr.Column(scale=3, min_width=100):
|
| 312 |
+
submit = gr.Button("📤 Отправить", variant="primary")
|
| 313 |
+
|
| 314 |
+
with gr.Row():
|
| 315 |
+
# gr.Button(value="👍 Понравилось")
|
| 316 |
+
# gr.Button(value="👎 Не понравилось")
|
| 317 |
+
stop = gr.Button(value="⛔ Остановить")
|
| 318 |
+
regenerate = gr.Button(value="🔄 Повторить")
|
| 319 |
+
clear = gr.Button(value="🗑️ Очистить")
|
| 320 |
+
|
| 321 |
+
# # Upload files
|
| 322 |
+
# file_output.upload(
|
| 323 |
+
# fn=self.upload_files,
|
| 324 |
+
# inputs=[file_output],
|
| 325 |
+
# outputs=[file_paths],
|
| 326 |
+
# queue=True,
|
| 327 |
+
# ).success(
|
| 328 |
+
# fn=self.build_index,
|
| 329 |
+
# inputs=[file_paths, db, chunk_size, chunk_overlap],
|
| 330 |
+
# outputs=[db, file_warning],
|
| 331 |
+
# queue=True
|
| 332 |
+
# )
|
| 333 |
+
|
| 334 |
+
model_selector.change(
|
| 335 |
+
fn=self.load_model,
|
| 336 |
+
inputs=[model_selector],
|
| 337 |
+
outputs=[model_selector]
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
# Pressing Enter
|
| 341 |
+
submit_event = msg.submit(
|
| 342 |
+
fn=self.user,
|
| 343 |
+
inputs=[msg, chatbot],
|
| 344 |
+
outputs=[msg, chatbot],
|
| 345 |
+
queue=False,
|
| 346 |
+
).success(
|
| 347 |
+
fn=self.retrieve,
|
| 348 |
+
inputs=[chatbot, db, retrieved_docs],
|
| 349 |
+
outputs=[retrieved_docs],
|
| 350 |
+
queue=True,
|
| 351 |
+
).success(
|
| 352 |
+
fn=self.bot,
|
| 353 |
+
inputs=[chatbot, retrieved_docs],
|
| 354 |
+
outputs=chatbot,
|
| 355 |
+
queue=True,
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
# Pressing the button
|
| 359 |
+
submit_click_event = submit.click(
|
| 360 |
+
fn=self.user,
|
| 361 |
+
inputs=[msg, chatbot],
|
| 362 |
+
outputs=[msg, chatbot],
|
| 363 |
+
queue=False,
|
| 364 |
+
).success(
|
| 365 |
+
fn=self.retrieve,
|
| 366 |
+
inputs=[chatbot, db, retrieved_docs],
|
| 367 |
+
outputs=[retrieved_docs],
|
| 368 |
+
queue=True,
|
| 369 |
+
).success(
|
| 370 |
+
fn=self.bot,
|
| 371 |
+
inputs=[chatbot, retrieved_docs],
|
| 372 |
+
outputs=chatbot,
|
| 373 |
+
queue=True,
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
# Stop generation
|
| 377 |
+
stop.click(
|
| 378 |
+
fn=None,
|
| 379 |
+
inputs=None,
|
| 380 |
+
outputs=None,
|
| 381 |
+
cancels=[submit_event, submit_click_event],
|
| 382 |
+
queue=False,
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
# Regenerate
|
| 386 |
+
regenerate.click(
|
| 387 |
+
fn=self.regenerate_response,
|
| 388 |
+
inputs=[chatbot],
|
| 389 |
+
outputs=[msg, chatbot],
|
| 390 |
+
queue=False,
|
| 391 |
+
).success(
|
| 392 |
+
fn=self.retrieve,
|
| 393 |
+
inputs=[chatbot, db, retrieved_docs],
|
| 394 |
+
outputs=[retrieved_docs],
|
| 395 |
+
queue=True,
|
| 396 |
+
).success(
|
| 397 |
+
fn=self.bot,
|
| 398 |
+
inputs=[chatbot, retrieved_docs],
|
| 399 |
+
outputs=chatbot,
|
| 400 |
+
queue=True,
|
| 401 |
+
)
|
| 402 |
+
|
| 403 |
+
# Clear history
|
| 404 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
| 405 |
+
|
| 406 |
+
demo.queue(max_size=128, default_concurrency_limit=10, api_open=False)
|
| 407 |
+
demo.launch(server_name="0.0.0.0", max_threads=200)
|
| 408 |
+
|
| 409 |
+
|
| 410 |
+
if __name__ == "__main__":
|
| 411 |
+
local_chat_gpt = LocalChatGPT()
|
| 412 |
+
local_chat_gpt.run()
|