Spaces:
Running
Running
import pandas as pd | |
import faiss | |
from sentence_transformers import SentenceTransformer | |
from transformers import T5ForConditionalGeneration, T5Tokenizer | |
import numpy as np | |
import gradio as gr | |
# --- 1. Load Models and Data (runs only once when the app starts) --- | |
print("Loading models and data... This may take a moment.") | |
# Load the dataset | |
df = pd.read_csv('syn5000.csv') | |
df.rename(columns={ | |
'System / Subsystem Components': 'system', | |
'What is the item that you are focusing on?': 'item', | |
'What function does the item have?': 'function', | |
'What are you trying to achieve (Product Requirement)?': 'requirement', | |
'How could you get the requirements wrong (Failure Mode)?': 'failure_mode', | |
'Action Taken (Risk Mitigation)': 'mitigation' | |
}, inplace=True) | |
df['input_text'] = ( | |
"System: " + df['system'] + "; " + | |
"Item: " + df['item'] + "; " + | |
"Requirement: " + df['requirement'] + "; " + | |
"Failure: " + df['failure_mode'] | |
) | |
# Load the embedding model | |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2') | |
# Create and index embeddings using FAISS | |
corpus_embeddings = embedding_model.encode(df['input_text'].tolist()) | |
embedding_dimension = corpus_embeddings.shape[1] | |
index = faiss.IndexFlatL2(embedding_dimension) | |
index.add(corpus_embeddings) | |
# Load the generator model and tokenizer | |
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base") | |
generator_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base") | |
print("Models and data loaded successfully!") | |
# --- 2. The Core AI Logic --- | |
def retrieve_similar_examples(query_text, top_k=3): | |
query_embedding = embedding_model.encode([query_text]) | |
distances, indices = index.search(query_embedding, top_k) | |
return df.iloc[indices[0]].to_dict('records') | |
def generate_mitigation_text(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True) | |
outputs = generator_model.generate(**inputs, max_length=128, num_beams=4, early_stopping=True) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# This is the main function that Gradio will call | |
def suggest_mitigation_from_ui(system, item, requirement, failure_mode): | |
""" | |
Takes individual text inputs from the UI and returns a suggested mitigation. | |
""" | |
query_text = ( | |
f"System: {system}; " | |
f"Item: {item}; " | |
f"Requirement: {requirement}; " | |
f"Failure: {failure_mode}" | |
) | |
similar_examples = retrieve_similar_examples(query_text) | |
prompt = "You are an expert risk analysis engineer.\n\n" | |
prompt += "Based on the following similar past examples, write a specific risk mitigation action for the new failure described at the end.\n\n" | |
prompt += "--- EXAMPLES ---\n" | |
for ex in similar_examples: | |
prompt += f"Failure Description: {ex['input_text']}\n" | |
prompt += f"Mitigation Action: {ex['mitigation']}\n---\n" | |
prompt += "\n--- NEW FAILURE ---\n" | |
prompt += f"Failure Description: {query_text}\n" | |
prompt += "Mitigation Action:" | |
generated_text = generate_mitigation_text(prompt) | |
# We can also return the examples it used, for transparency | |
retrieved_info = "--- Retrieved Similar Examples ---\n" | |
for i, ex in enumerate(similar_examples): | |
retrieved_info += f"{i+1}. {ex['input_text'][:150]}...\n" | |
return generated_text, retrieved_info | |
# --- 3. Create the Gradio Web Interface --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# AI Risk Mitigation Assistant") | |
gr.Markdown("Enter the details of a potential failure to get an AI-generated mitigation suggestion based on historical data.") | |
with gr.Row(): | |
with gr.Column(): | |
system_input = gr.Textbox(label="System / Subsystem") | |
item_input = gr.Textbox(label="Item in Focus") | |
requirement_input = gr.Textbox(label="Product Requirement") | |
failure_mode_input = gr.Textbox(label="Failure Mode") | |
submit_btn = gr.Button("Suggest Mitigation", variant="primary") | |
with gr.Column(): | |
output_mitigation = gr.Textbox(label="✅ AI-Generated Mitigation Suggestion", lines=5) | |
output_examples = gr.Textbox(label="Retrieved Examples", lines=5) | |
submit_btn.click( | |
fn=suggest_mitigation_from_ui, | |
inputs=[system_input, item_input, requirement_input, failure_mode_input], | |
outputs=[output_mitigation, output_examples] | |
) | |
# This launches the app. On Hugging Face, it will be served automatically. | |
if __name__ == "__main__": | |
demo.launch() |