from transformers import FlaxAutoModelForSeq2SeqLM, AutoTokenizer, AutoModel import torch import numpy as np import random import json from fastapi import FastAPI from fastapi.responses import JSONResponse from pydantic import BaseModel from datetime import datetime, timedelta # Lade RecipeBERT Modell (für semantische Zutat-Kombination) bert_model_name = "alexdseo/RecipeBERT" bert_tokenizer = AutoTokenizer.from_pretrained(bert_model_name) bert_model = AutoModel.from_pretrained(bert_model_name) bert_model.eval() # Setze das Modell in den Evaluationsmodus # Lade T5 Rezeptgenerierungsmodell MODEL_NAME_OR_PATH = "flax-community/t5-recipe-generation" t5_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True) t5_model = FlaxAutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME_OR_PATH) # Token Mapping für die T5 Modell-Ausgabe special_tokens = t5_tokenizer.all_special_tokens tokens_map = { "": "--", "
": "\n" } # --- RecipeBERT-spezifische Funktionen --- def get_embedding(text): """Berechnet das Embedding für einen Text mit Mean Pooling über alle Tokens""" inputs = bert_tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = bert_model(**inputs) attention_mask = inputs['attention_mask'] token_embeddings = outputs.last_hidden_state input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return (sum_embeddings / sum_mask).squeeze(0) def average_embedding(embedding_list): """Berechnet den Durchschnitt einer Liste von Embeddings""" tensors = torch.stack([emb for _, emb in embedding_list]) return tensors.mean(dim=0) def get_cosine_similarity(vec1, vec2): """Berechnet die Cosinus-Ähnlichkeit zwischen zwei Vektoren""" if torch.is_tensor(vec1): vec1 = vec1.detach().numpy() if torch.is_tensor(vec2): vec2 = vec2.detach().numpy() vec1 = vec1.flatten() vec2 = vec2.flatten() dot_product = np.dot(vec1, vec2) norm_a = np.linalg.norm(vec1) norm_b = np.linalg.norm(vec2) if norm_a == 0 or norm_b == 0: return 0 return dot_product / (norm_a * norm_b) def calculate_age_bonus(date_added_str: str, category: str) -> float: """ Berechnet einen prozentualen Bonus basierend auf dem Alter der Zutat. - Standard: 0.5% pro Tag, max. 10%. - Gemüse: 2.0% pro Tag, max. 10%. """ try: # Handle 'Z' for UTC and parse to datetime object date_added = datetime.fromisoformat(date_added_str.replace('Z', '+00:00')) except ValueError: print(f"Warning: Could not parse date_added_str: {date_added_str}. Returning 0 bonus.") return 0.0 today = datetime.now() days_since_added = (today - date_added).days if days_since_added < 0: # Zutat aus der Zukunft? Ungültig. return 0.0 if category and category.lower() == "vegetables": daily_bonus = 0.02 # 2% pro Tag für Gemüse else: daily_bonus = 0.005 # 0.5% pro Tag für andere bonus = days_since_added * daily_bonus return min(bonus, 0.10) # Max 10% (0.10) def get_combined_scores(query_vector, embedding_list_with_details, all_good_embeddings, avg_weight=0.6): """ Berechnet einen kombinierten Score unter Berücksichtigung der Ähnlichkeit zum Durchschnitt und zu einzelnen Zutaten. Jetzt inklusive Altersbonus. embedding_list_with_details: Liste von Tupeln (Name, Embedding, DateAddedStr, Category) """ results = [] for name, emb, date_added_str, category in embedding_list_with_details: avg_similarity = get_cosine_similarity(query_vector, emb) individual_similarities = [get_cosine_similarity(good_emb, emb) for _, good_emb in all_good_embeddings] avg_individual_similarity = sum(individual_similarities) / len(individual_similarities) if individual_similarities else 0 base_combined_score = avg_weight * avg_similarity + (1 - avg_weight) * avg_individual_similarity # NEU: Altersbonus hinzufügen age_bonus = calculate_age_bonus(date_added_str, category) final_combined_score = base_combined_score + age_bonus results.append((name, emb, final_combined_score, date_added_str, category)) results.sort(key=lambda x: x[2], reverse=True) return results def find_best_ingredients(required_ingredients_names, available_ingredients_details, max_ingredients=6, avg_weight=0.6): """ Findet die besten Zutaten basierend auf RecipeBERT Embeddings, jetzt mit Alters- und Kategorie-Bonus. required_ingredients_names: Liste von Strings (nur Namen) available_ingredients_details: Liste von IngredientDetail-Objekten """ required_ingredients_names = list(set(required_ingredients_names)) # Filtern der verfügbaren Zutaten, um sicherzustellen, dass keine Pflichtzutaten dabei sind # Korrektur hier: Zugriff auf item.name statt item['name'] available_ingredients_filtered_details = [ item for item in available_ingredients_details if item.name not in required_ingredients_names # <--- KORREKTUR ] # Wenn keine Pflichtzutaten vorhanden sind, aber verfügbare, wähle eine zufällig als Pflichtzutat if not required_ingredients_names and available_ingredients_filtered_details: random_item = random.choice(available_ingredients_filtered_details) required_ingredients_names = [random_item.name] # <--- KORREKTUR # Entferne die zufällig gewählte Zutat aus den verfügbaren Details available_ingredients_filtered_details = [ item for item in available_ingredients_filtered_details if item.name != random_item.name # <--- KORREKTUR ] print(f"No required ingredients provided. Randomly selected: {required_ingredients_names[0]}") if not required_ingredients_names or len(required_ingredients_names) >= max_ingredients: return required_ingredients_names[:max_ingredients] if not available_ingredients_filtered_details: return required_ingredients_names # Erstelle Embeddings für Pflichtzutaten (nur Name und Embedding) embed_required = [(name, get_embedding(name)) for name in required_ingredients_names] # Erstelle Embeddings für verfügbare Zutaten, inklusive ihrer Details # Korrektur hier: Zugriff auf item.name, item.dateAdded, item.category embed_available_with_details = [ (item.name, get_embedding(item.name), item.dateAdded, item.category) # <--- KORREKTUR for item in available_ingredients_filtered_details ] num_to_add = min(max_ingredients - len(required_ingredients_names), len(embed_available_with_details)) final_ingredients_with_embeddings = embed_required.copy() # (Name, Embedding) final_ingredients_names = required_ingredients_names.copy() # Nur Namen zum Tracken der ausgewählten for _ in range(num_to_add): avg = average_embedding(final_ingredients_with_embeddings) candidates = get_combined_scores(avg, embed_available_with_details, final_ingredients_with_embeddings, avg_weight) if not candidates: break best_name, best_embedding, best_score, _, _ = candidates[0] # Holen Sie den besten Kandidaten final_ingredients_with_embeddings.append((best_name, best_embedding)) final_ingredients_names.append(best_name) # Entferne den besten Kandidaten aus den verfügbaren # Korrektur hier: Zugriff auf item[0] (den Namen im Tupel) embed_available_with_details = [item for item in embed_available_with_details if item[0] != best_name] return final_ingredients_names def skip_special_tokens(text, special_tokens): """Entfernt spezielle Tokens aus dem Text""" for token in special_tokens: text = text.replace(token, "") return text def target_postprocessing(texts, special_tokens): """Post-processed generierten Text""" if not isinstance(texts, list): texts = [texts] new_texts = [] for text in texts: text = skip_special_tokens(text, special_tokens) for k, v in tokens_map.items(): text = text.replace(k, v) new_texts.append(text) return new_texts def validate_recipe_ingredients(recipe_ingredients, expected_ingredients, tolerance=0): """ Validiert, ob das Rezept ungefähr die erwarteten Zutaten enthält. """ recipe_count = len([ing for ing in recipe_ingredients if ing and ing.strip()]) expected_count = len(expected_ingredients) return abs(recipe_count - expected_count) == tolerance def generate_recipe_with_t5(ingredients_list, max_retries=5): """Generiert ein Rezept mit dem T5 Rezeptgenerierungsmodell mit Validierung.""" original_ingredients = ingredients_list.copy() for attempt in range(max_retries): try: if attempt > 0: current_ingredients = original_ingredients.copy() random.shuffle(current_ingredients) else: current_ingredients = ingredients_list ingredients_string = ", ".join(current_ingredients) prefix = "items: " generation_kwargs = { "max_length": 512, "min_length": 64, "do_sample": True, "top_k": 60, "top_p": 0.95 } print(f"Attempt {attempt + 1}: {prefix + ingredients_string}") # Debug-Print inputs = t5_tokenizer( prefix + ingredients_string, max_length=256, padding="max_length", truncation=True, return_tensors="jax" ) output_ids = t5_model.generate( input_ids=inputs.input_ids, attention_mask=inputs.attention_mask, **generation_kwargs ) generated = output_ids.sequences generated_text = target_postprocessing( t5_tokenizer.batch_decode(generated, skip_special_tokens=False), special_tokens )[0] recipe = {} sections = generated_text.split("\n") for section in sections: section = section.strip() if section.startswith("title:"): recipe["title"] = section.replace("title:", "").strip().capitalize() elif section.startswith("ingredients:"): ingredients_text = section.replace("ingredients:", "").strip() recipe["ingredients"] = [item.strip().capitalize() for item in ingredients_text.split("--") if item.strip()] elif section.startswith("directions:"): directions_text = section.replace("directions:", "").strip() recipe["directions"] = [step.strip().capitalize() for step in directions_text.split("--") if step.strip()] if "title" not in recipe: recipe["title"] = f"Rezept mit {', '.join(current_ingredients[:3])}" if "ingredients" not in recipe: recipe["ingredients"] = current_ingredients if "directions" not in recipe: recipe["directions"] = ["Keine Anweisungen generiert"] if validate_recipe_ingredients(recipe["ingredients"], original_ingredients): print(f"Success on attempt {attempt + 1}: Recipe has correct number of ingredients") # Debug-Print return recipe else: print(f"Attempt {attempt + 1} failed: Expected {len(original_ingredients)} ingredients, got {len(recipe['ingredients'])}") # Debug-Print if attempt == max_retries - 1: print("Max retries reached, returning last generated recipe") # Debug-Print return recipe except Exception as e: print(f"Error in recipe generation attempt {attempt + 1}: {str(e)}") # Debug-Print if attempt == max_retries - 1: return { "title": f"Rezept mit {original_ingredients[0] if original_ingredients else 'Zutaten'}", "ingredients": original_ingredients, "directions": ["Fehler beim Generieren der Rezeptanweisungen"] } return { "title": f"Rezept mit {original_ingredients[0] if original_ingredients else 'Zutaten'}", "ingredients": original_ingredients, "directions": ["Fehler beim Generieren der Rezeptanweisungen"] } def process_recipe_request_logic(required_ingredients, available_ingredients_details, max_ingredients, max_retries): """ Kernlogik zur Verarbeitung einer Rezeptgenerierungsanfrage. available_ingredients_details: Liste von IngredientDetail-Objekten """ if not required_ingredients and not available_ingredients_details: return {"error": "Keine Zutaten angegeben"} try: optimized_ingredients = find_best_ingredients( required_ingredients, available_ingredients_details, max_ingredients ) recipe = generate_recipe_with_t5(optimized_ingredients, max_retries) result = { 'title': recipe['title'], 'ingredients': recipe['ingredients'], 'directions': recipe['directions'], 'used_ingredients': optimized_ingredients } return result except Exception as e: import traceback traceback.print_exc() return {"error": f"Fehler bei der Rezeptgenerierung: {str(e)}"} # --- FastAPI-Implementierung --- app = FastAPI(title="AI Recipe Generator API") class IngredientDetail(BaseModel): name: str dateAdded: str category: str class RecipeRequest(BaseModel): required_ingredients: list[str] = [] available_ingredients: list[IngredientDetail] = [] max_ingredients: int = 7 max_retries: int = 5 ingredients: list[str] = [] @app.post("/generate_recipe") async def generate_recipe_api(request_data: RecipeRequest): """ Standard-REST-API-Endpunkt für die Flutter-App. Nimmt direkt JSON-Daten an und gibt direkt JSON zurück. """ final_required_ingredients = request_data.required_ingredients if not final_required_ingredients and request_data.ingredients: final_required_ingredients = request_data.ingredients result_dict = process_recipe_request_logic( final_required_ingredients, request_data.available_ingredients, request_data.max_ingredients, request_data.max_retries ) return JSONResponse(content=result_dict) @app.get("/") async def read_root(): return {"message": "AI Recipe Generator API is running (FastAPI only)!"} print("INFO: Pure FastAPI application script finished execution and defined 'app' variable.")