Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ import json
|
|
6 |
from fastapi import FastAPI
|
7 |
from fastapi.responses import JSONResponse
|
8 |
from pydantic import BaseModel
|
9 |
-
from datetime import datetime, timedelta
|
10 |
|
11 |
# Lade RecipeBERT Modell (für semantische Zutat-Kombination)
|
12 |
bert_model_name = "alexdseo/RecipeBERT"
|
@@ -59,7 +59,6 @@ def get_cosine_similarity(vec1, vec2):
|
|
59 |
return 0
|
60 |
return dot_product / (norm_a * norm_b)
|
61 |
|
62 |
-
# NEUE FUNKTION: Berechnet den Altersbonus für eine Zutat
|
63 |
def calculate_age_bonus(date_added_str: str, category: str) -> float:
|
64 |
"""
|
65 |
Berechnet einen prozentualen Bonus basierend auf dem Alter der Zutat.
|
@@ -67,7 +66,8 @@ def calculate_age_bonus(date_added_str: str, category: str) -> float:
|
|
67 |
- Gemüse: 2.0% pro Tag, max. 10%.
|
68 |
"""
|
69 |
try:
|
70 |
-
|
|
|
71 |
except ValueError:
|
72 |
print(f"Warning: Could not parse date_added_str: {date_added_str}. Returning 0 bonus.")
|
73 |
return 0.0
|
@@ -105,7 +105,7 @@ def get_combined_scores(query_vector, embedding_list_with_details, all_good_embe
|
|
105 |
age_bonus = calculate_age_bonus(date_added_str, category)
|
106 |
final_combined_score = base_combined_score + age_bonus
|
107 |
|
108 |
-
results.append((name, emb, final_combined_score, date_added_str, category))
|
109 |
results.sort(key=lambda x: x[2], reverse=True)
|
110 |
return results
|
111 |
|
@@ -113,25 +113,25 @@ def find_best_ingredients(required_ingredients_names, available_ingredients_deta
|
|
113 |
"""
|
114 |
Findet die besten Zutaten basierend auf RecipeBERT Embeddings, jetzt mit Alters- und Kategorie-Bonus.
|
115 |
required_ingredients_names: Liste von Strings (nur Namen)
|
116 |
-
available_ingredients_details: Liste von
|
117 |
"""
|
118 |
required_ingredients_names = list(set(required_ingredients_names))
|
119 |
|
120 |
# Filtern der verfügbaren Zutaten, um sicherzustellen, dass keine Pflichtzutaten dabei sind
|
121 |
-
#
|
122 |
available_ingredients_filtered_details = [
|
123 |
item for item in available_ingredients_details
|
124 |
-
if item
|
125 |
]
|
126 |
|
127 |
# Wenn keine Pflichtzutaten vorhanden sind, aber verfügbare, wähle eine zufällig als Pflichtzutat
|
128 |
if not required_ingredients_names and available_ingredients_filtered_details:
|
129 |
random_item = random.choice(available_ingredients_filtered_details)
|
130 |
-
required_ingredients_names = [random_item
|
131 |
# Entferne die zufällig gewählte Zutat aus den verfügbaren Details
|
132 |
available_ingredients_filtered_details = [
|
133 |
item for item in available_ingredients_filtered_details
|
134 |
-
if item
|
135 |
]
|
136 |
print(f"No required ingredients provided. Randomly selected: {required_ingredients_names[0]}")
|
137 |
|
@@ -145,8 +145,9 @@ def find_best_ingredients(required_ingredients_names, available_ingredients_deta
|
|
145 |
embed_required = [(name, get_embedding(name)) for name in required_ingredients_names]
|
146 |
|
147 |
# Erstelle Embeddings für verfügbare Zutaten, inklusive ihrer Details
|
|
|
148 |
embed_available_with_details = [
|
149 |
-
(item
|
150 |
for item in available_ingredients_filtered_details
|
151 |
]
|
152 |
|
@@ -157,7 +158,6 @@ def find_best_ingredients(required_ingredients_names, available_ingredients_deta
|
|
157 |
|
158 |
for _ in range(num_to_add):
|
159 |
avg = average_embedding(final_ingredients_with_embeddings)
|
160 |
-
# Sende die Liste mit den detaillierten Zutaten an get_combined_scores
|
161 |
candidates = get_combined_scores(avg, embed_available_with_details, final_ingredients_with_embeddings, avg_weight)
|
162 |
|
163 |
if not candidates:
|
@@ -165,11 +165,11 @@ def find_best_ingredients(required_ingredients_names, available_ingredients_deta
|
|
165 |
|
166 |
best_name, best_embedding, best_score, _, _ = candidates[0] # Holen Sie den besten Kandidaten
|
167 |
|
168 |
-
# Füge nur den Namen und das Embedding zum final_ingredients_with_embeddings hinzu
|
169 |
final_ingredients_with_embeddings.append((best_name, best_embedding))
|
170 |
final_ingredients_names.append(best_name)
|
171 |
|
172 |
# Entferne den besten Kandidaten aus den verfügbaren
|
|
|
173 |
embed_available_with_details = [item for item in embed_available_with_details if item[0] != best_name]
|
174 |
|
175 |
return final_ingredients_names
|
@@ -283,12 +283,11 @@ def generate_recipe_with_t5(ingredients_list, max_retries=5):
|
|
283 |
def process_recipe_request_logic(required_ingredients, available_ingredients_details, max_ingredients, max_retries):
|
284 |
"""
|
285 |
Kernlogik zur Verarbeitung einer Rezeptgenerierungsanfrage.
|
286 |
-
available_ingredients_details: Liste von
|
287 |
"""
|
288 |
if not required_ingredients and not available_ingredients_details:
|
289 |
return {"error": "Keine Zutaten angegeben"}
|
290 |
try:
|
291 |
-
# Die find_best_ingredients Funktion erwartet jetzt die detaillierte Liste
|
292 |
optimized_ingredients = find_best_ingredients(
|
293 |
required_ingredients, available_ingredients_details, max_ingredients
|
294 |
)
|
@@ -302,25 +301,22 @@ def process_recipe_request_logic(required_ingredients, available_ingredients_det
|
|
302 |
return result
|
303 |
except Exception as e:
|
304 |
import traceback
|
305 |
-
traceback.print_exc()
|
306 |
return {"error": f"Fehler bei der Rezeptgenerierung: {str(e)}"}
|
307 |
|
308 |
# --- FastAPI-Implementierung ---
|
309 |
app = FastAPI(title="AI Recipe Generator API")
|
310 |
|
311 |
-
# NEU: Model für die empfangene Zutat mit Details
|
312 |
class IngredientDetail(BaseModel):
|
313 |
name: str
|
314 |
-
dateAdded: str
|
315 |
category: str
|
316 |
|
317 |
class RecipeRequest(BaseModel):
|
318 |
required_ingredients: list[str] = []
|
319 |
-
# NEU: available_ingredients ist jetzt eine Liste von IngredientDetail-Objekten
|
320 |
available_ingredients: list[IngredientDetail] = []
|
321 |
max_ingredients: int = 7
|
322 |
max_retries: int = 5
|
323 |
-
# Optional: Für Abwärtskompatibilität (kann entfernt werden, wenn nicht mehr benötigt)
|
324 |
ingredients: list[str] = []
|
325 |
|
326 |
@app.post("/generate_recipe")
|
@@ -333,10 +329,9 @@ async def generate_recipe_api(request_data: RecipeRequest):
|
|
333 |
if not final_required_ingredients and request_data.ingredients:
|
334 |
final_required_ingredients = request_data.ingredients
|
335 |
|
336 |
-
# Jetzt die detaillierten available_ingredients an die Logik übergeben
|
337 |
result_dict = process_recipe_request_logic(
|
338 |
final_required_ingredients,
|
339 |
-
request_data.available_ingredients,
|
340 |
request_data.max_ingredients,
|
341 |
request_data.max_retries
|
342 |
)
|
|
|
6 |
from fastapi import FastAPI
|
7 |
from fastapi.responses import JSONResponse
|
8 |
from pydantic import BaseModel
|
9 |
+
from datetime import datetime, timedelta
|
10 |
|
11 |
# Lade RecipeBERT Modell (für semantische Zutat-Kombination)
|
12 |
bert_model_name = "alexdseo/RecipeBERT"
|
|
|
59 |
return 0
|
60 |
return dot_product / (norm_a * norm_b)
|
61 |
|
|
|
62 |
def calculate_age_bonus(date_added_str: str, category: str) -> float:
|
63 |
"""
|
64 |
Berechnet einen prozentualen Bonus basierend auf dem Alter der Zutat.
|
|
|
66 |
- Gemüse: 2.0% pro Tag, max. 10%.
|
67 |
"""
|
68 |
try:
|
69 |
+
# Handle 'Z' for UTC and parse to datetime object
|
70 |
+
date_added = datetime.fromisoformat(date_added_str.replace('Z', '+00:00'))
|
71 |
except ValueError:
|
72 |
print(f"Warning: Could not parse date_added_str: {date_added_str}. Returning 0 bonus.")
|
73 |
return 0.0
|
|
|
105 |
age_bonus = calculate_age_bonus(date_added_str, category)
|
106 |
final_combined_score = base_combined_score + age_bonus
|
107 |
|
108 |
+
results.append((name, emb, final_combined_score, date_added_str, category))
|
109 |
results.sort(key=lambda x: x[2], reverse=True)
|
110 |
return results
|
111 |
|
|
|
113 |
"""
|
114 |
Findet die besten Zutaten basierend auf RecipeBERT Embeddings, jetzt mit Alters- und Kategorie-Bonus.
|
115 |
required_ingredients_names: Liste von Strings (nur Namen)
|
116 |
+
available_ingredients_details: Liste von IngredientDetail-Objekten
|
117 |
"""
|
118 |
required_ingredients_names = list(set(required_ingredients_names))
|
119 |
|
120 |
# Filtern der verfügbaren Zutaten, um sicherzustellen, dass keine Pflichtzutaten dabei sind
|
121 |
+
# Korrektur hier: Zugriff auf item.name statt item['name']
|
122 |
available_ingredients_filtered_details = [
|
123 |
item for item in available_ingredients_details
|
124 |
+
if item.name not in required_ingredients_names # <--- KORREKTUR
|
125 |
]
|
126 |
|
127 |
# Wenn keine Pflichtzutaten vorhanden sind, aber verfügbare, wähle eine zufällig als Pflichtzutat
|
128 |
if not required_ingredients_names and available_ingredients_filtered_details:
|
129 |
random_item = random.choice(available_ingredients_filtered_details)
|
130 |
+
required_ingredients_names = [random_item.name] # <--- KORREKTUR
|
131 |
# Entferne die zufällig gewählte Zutat aus den verfügbaren Details
|
132 |
available_ingredients_filtered_details = [
|
133 |
item for item in available_ingredients_filtered_details
|
134 |
+
if item.name != random_item.name # <--- KORREKTUR
|
135 |
]
|
136 |
print(f"No required ingredients provided. Randomly selected: {required_ingredients_names[0]}")
|
137 |
|
|
|
145 |
embed_required = [(name, get_embedding(name)) for name in required_ingredients_names]
|
146 |
|
147 |
# Erstelle Embeddings für verfügbare Zutaten, inklusive ihrer Details
|
148 |
+
# Korrektur hier: Zugriff auf item.name, item.dateAdded, item.category
|
149 |
embed_available_with_details = [
|
150 |
+
(item.name, get_embedding(item.name), item.dateAdded, item.category) # <--- KORREKTUR
|
151 |
for item in available_ingredients_filtered_details
|
152 |
]
|
153 |
|
|
|
158 |
|
159 |
for _ in range(num_to_add):
|
160 |
avg = average_embedding(final_ingredients_with_embeddings)
|
|
|
161 |
candidates = get_combined_scores(avg, embed_available_with_details, final_ingredients_with_embeddings, avg_weight)
|
162 |
|
163 |
if not candidates:
|
|
|
165 |
|
166 |
best_name, best_embedding, best_score, _, _ = candidates[0] # Holen Sie den besten Kandidaten
|
167 |
|
|
|
168 |
final_ingredients_with_embeddings.append((best_name, best_embedding))
|
169 |
final_ingredients_names.append(best_name)
|
170 |
|
171 |
# Entferne den besten Kandidaten aus den verfügbaren
|
172 |
+
# Korrektur hier: Zugriff auf item[0] (den Namen im Tupel)
|
173 |
embed_available_with_details = [item for item in embed_available_with_details if item[0] != best_name]
|
174 |
|
175 |
return final_ingredients_names
|
|
|
283 |
def process_recipe_request_logic(required_ingredients, available_ingredients_details, max_ingredients, max_retries):
|
284 |
"""
|
285 |
Kernlogik zur Verarbeitung einer Rezeptgenerierungsanfrage.
|
286 |
+
available_ingredients_details: Liste von IngredientDetail-Objekten
|
287 |
"""
|
288 |
if not required_ingredients and not available_ingredients_details:
|
289 |
return {"error": "Keine Zutaten angegeben"}
|
290 |
try:
|
|
|
291 |
optimized_ingredients = find_best_ingredients(
|
292 |
required_ingredients, available_ingredients_details, max_ingredients
|
293 |
)
|
|
|
301 |
return result
|
302 |
except Exception as e:
|
303 |
import traceback
|
304 |
+
traceback.print_exc()
|
305 |
return {"error": f"Fehler bei der Rezeptgenerierung: {str(e)}"}
|
306 |
|
307 |
# --- FastAPI-Implementierung ---
|
308 |
app = FastAPI(title="AI Recipe Generator API")
|
309 |
|
|
|
310 |
class IngredientDetail(BaseModel):
|
311 |
name: str
|
312 |
+
dateAdded: str
|
313 |
category: str
|
314 |
|
315 |
class RecipeRequest(BaseModel):
|
316 |
required_ingredients: list[str] = []
|
|
|
317 |
available_ingredients: list[IngredientDetail] = []
|
318 |
max_ingredients: int = 7
|
319 |
max_retries: int = 5
|
|
|
320 |
ingredients: list[str] = []
|
321 |
|
322 |
@app.post("/generate_recipe")
|
|
|
329 |
if not final_required_ingredients and request_data.ingredients:
|
330 |
final_required_ingredients = request_data.ingredients
|
331 |
|
|
|
332 |
result_dict = process_recipe_request_logic(
|
333 |
final_required_ingredients,
|
334 |
+
request_data.available_ingredients,
|
335 |
request_data.max_ingredients,
|
336 |
request_data.max_retries
|
337 |
)
|