Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -207,7 +207,7 @@ class Translators:
|
|
| 207 |
def bigscience(self):
|
| 208 |
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 209 |
model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name)
|
| 210 |
-
self.input_text = self.input_text if self.input_text.endswith('.') else f{self.input_text}.'
|
| 211 |
inputs = tokenizer.encode(f"Translate to {self.tl}: {self.input_text}", return_tensors="pt")
|
| 212 |
outputs = model.generate(inputs)
|
| 213 |
translation = tokenizer.decode(outputs[0])
|
|
@@ -217,7 +217,7 @@ class Translators:
|
|
| 217 |
def bloomz(self):
|
| 218 |
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 219 |
model = AutoModelForCausalLM.from_pretrained(self.model_name)
|
| 220 |
-
self.input_text = self.input_text if self.input_text.endswith('.') else f{self.input_text}.'
|
| 221 |
# inputs = tokenizer.encode(f"Translate from {self.sl} to {self.tl}: {self.input_text} Translation:", return_tensors="pt")
|
| 222 |
inputs = tokenizer.encode(f"Translate to {self.tl}: {self.input_text}", return_tensors="pt")
|
| 223 |
outputs = model.generate(inputs)
|
|
|
|
| 207 |
def bigscience(self):
|
| 208 |
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 209 |
model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name)
|
| 210 |
+
self.input_text = self.input_text if self.input_text.endswith('.') else f'{self.input_text}.'
|
| 211 |
inputs = tokenizer.encode(f"Translate to {self.tl}: {self.input_text}", return_tensors="pt")
|
| 212 |
outputs = model.generate(inputs)
|
| 213 |
translation = tokenizer.decode(outputs[0])
|
|
|
|
| 217 |
def bloomz(self):
|
| 218 |
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 219 |
model = AutoModelForCausalLM.from_pretrained(self.model_name)
|
| 220 |
+
self.input_text = self.input_text if self.input_text.endswith('.') else f'{self.input_text}.'
|
| 221 |
# inputs = tokenizer.encode(f"Translate from {self.sl} to {self.tl}: {self.input_text} Translation:", return_tensors="pt")
|
| 222 |
inputs = tokenizer.encode(f"Translate to {self.tl}: {self.input_text}", return_tensors="pt")
|
| 223 |
outputs = model.generate(inputs)
|