from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer from Hugging Face model_name = "Qwen/Qwen2.5-Coder-32B-Instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", # Automatically selects the appropriate dtype device_map="auto" # Distributes the model across available devices ) tokenizer = AutoTokenizer.from_pretrained(model_name) # Define the prompt for the model prompt = "write a quick sort algorithm." # Prepare the messages to pass to the model messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] # Generate the input for the model using the tokenizer text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # Generate the response from the model generated_ids = model.generate( **model_inputs, max_new_tokens=512 # Limit the length of the generated text ) # Decode and print the result generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response)