File size: 4,334 Bytes
a81ce97
 
 
 
 
 
 
85ace1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import gradio as gr

def greet(name):
    return "Hello " + name + "!!"

iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()

MODELS=`[

{

"name" : "mistralai/Mixtral-8x7B-Instruct-v0.1",

"description" : "The latest MoE model from Mistral AI! 8x7B and outperforms Llama 2 70B in most benchmarks.",

"websiteUrl" : "https://mistral.ai/news/mixtral-of-experts/",

"preprompt" : "",

"chatPromptTemplate": "<s> {{#each messages}}{{#ifUser}}[INST]{{#if @first}}{{#if @root.preprompt}}{{@root.preprompt}}\n{{/if}}{{/if}} {{content}} [/INST]{{/ifUser}}{{#ifAssistant}} {{content}}</s> {{/ifAssistant}}{{/each}}",

"parameters" : {

"temperature" : 0.6,

"top_p" : 0.95,

"repetition_penalty" : 1.2,

"top_k" : 50,

"truncate" : 24576,

"max_new_tokens" : 8192,

"stop" : ["</s>"]

},

"promptExamples" : [

{

"title": "Write an email from bullet list",

"prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"

}, {

"title": "Code a snake game",

"prompt": "Code a basic snake game in python, give explanations for each step."

}, {

"title": "Assist in a task",

"prompt": "How do I make a delicious lemon cheesecake?"

}

]

},

{

"name": "meta-llama/Llama-2-70b-chat-hf",

"description": "The latest and biggest model from Meta, fine-tuned for chat.",

"websiteUrl": "https://ai.meta.com/llama/",

"userMessageToken": "",

"userMessageEndToken": " [/INST] ",

"assistantMessageToken": "",

"assistantMessageEndToken": " </s><s>[INST] ",

"preprompt": " ",

"chatPromptTemplate" : "<s>[INST] <<SYS>>\n{{preprompt}}\n<</SYS>>\n\n{{#each messages}}{{#ifUser}}{{content}} [/INST] {{/ifUser}}{{#ifAssistant}}{{content}} </s><s>[INST] {{/ifAssistant}}{{/each}}",

"promptExamples": [

{

"title": "Write an email from bullet list",

"prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"

}, {

"title": "Code a snake game",

"prompt": "Code a basic snake game in python, give explanations for each step."

}, {

"title": "Assist in a task",

"prompt": "How do I make a delicious lemon cheesecake?"

}

],

"parameters": {

"temperature": 0.1,

"top_p": 0.95,

"repetition_penalty": 1.2,

"top_k": 50,

"truncate": 3072,

"max_new_tokens": 1024,

"stop" : ["</s>", " </s><s>[INST] "]

}

},

{

"name" : "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",

"description" : "Nous Hermes 2 Mixtral 8x7B DPO is the new flagship Nous Research model trained over the Mixtral 8x7B MoE LLM.",

"websiteUrl" : "https://nousresearch.com/",

"chatPromptTemplate" : "<|im_start|>system\n{{#if @root.preprompt}}{{@root.preprompt}}<|im_end|>\n{{/if}}{{#each messages}}{{#ifUser}}<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n{{/ifUser}}{{#ifAssistant}}{{content}}<|im_end|>\n{{/ifAssistant}}{{/each}}",

"promptExamples": [

{

"title": "Write an email from bullet list",

"prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"

}, {

"title": "Code a snake game",

"prompt": "Code a basic snake game in python, give explanations for each step."

}, {

"title": "Assist in a task",

"prompt": "How do I make a delicious lemon cheesecake?"

}

],

"parameters": {

"temperature": 0.7,

"top_p": 0.95,

"repetition_penalty": 1,

"top_k": 50,

"truncate": 24576,

"max_new_tokens": 2048,

"stop": ["<|im_end|>"]

}

},

{

"name": "codellama/CodeLlama-34b-Instruct-hf",

"displayName": "codellama/CodeLlama-34b-Instruct-hf",

"description": "Code Llama, a state of the art code model from Meta.",

"websiteUrl": "https://about.fb.com/news/2023/08/code-llama-ai-for-coding/",

"userMessageToken": "",

"userMessageEndToken": " [/INST] ",

"assistantMessageToken": "",

"assistantMessageEndToken": " </s><s>[INST] ",

"preprompt": " ",

"chatPromptTemplate" : "<s>[INST] <<SYS>>\n{{preprompt}}\n<</SYS>>\n\n{{#each messages}}{{#ifUser}}{{content}} [/INST] {{/ifUser}}{{#ifAssistant}}{{content}} </s><s>[INST] {{/ifAssistant}}{{/each}}",

"promptExamples": [

{

"title": "Fibonacci in Python",

"prompt": "Write a python function to calculate the nth fibonacci number."

}, {

"title": "JavaScript promises",