Update app.py
Browse files
app.py
CHANGED
|
@@ -27,11 +27,17 @@ Built by **Mihir Naik** 🚀
|
|
| 27 |
)
|
| 28 |
|
| 29 |
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
@app.get("/")
|
| 35 |
def redirect_to_docs():
|
| 36 |
"""
|
| 37 |
Redirects to the FastAPI documentation.
|
|
@@ -55,6 +61,9 @@ def generate_embeddings_all_MiniLM_L6_V2_model(sentences: List[str]):
|
|
| 55 |
Returns:
|
| 56 |
dict: A dictionary containing the embeddings as a JSON-compatible list.
|
| 57 |
"""
|
|
|
|
|
|
|
|
|
|
| 58 |
embeddings = all_MiniLM_L6_V2_model.encode(sentences)
|
| 59 |
return {"embeddings": embeddings.tolist()} # Return embeddings as a JSON-compatible list
|
| 60 |
|
|
@@ -70,5 +79,9 @@ def generate_embeddings_intfloat_e5_large_v2_model(sentences: List[str]):
|
|
| 70 |
Returns:
|
| 71 |
dict: A dictionary containing the embeddings as a JSON-compatible list.
|
| 72 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
embeddings = intfloat_e5_large_v2_model.encode(sentences)
|
| 74 |
return {"embeddings": embeddings.tolist()}
|
|
|
|
| 27 |
)
|
| 28 |
|
| 29 |
|
| 30 |
+
try:
|
| 31 |
+
all_MiniLM_L6_V2_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 32 |
+
except Exception as e:
|
| 33 |
+
raise RuntimeError("Failed to load the all-MiniLM-L6-v2 model.") from e
|
| 34 |
|
| 35 |
+
try:
|
| 36 |
+
intfloat_e5_large_v2_model = SentenceTransformer('intfloat/e5-large-v2')
|
| 37 |
+
except Exception as e:
|
| 38 |
+
raise RuntimeError("Failed to load the intfloat/e5-large-v2 model.") from e
|
| 39 |
|
| 40 |
+
@app.get("/", include_in_schema=False)
|
| 41 |
def redirect_to_docs():
|
| 42 |
"""
|
| 43 |
Redirects to the FastAPI documentation.
|
|
|
|
| 61 |
Returns:
|
| 62 |
dict: A dictionary containing the embeddings as a JSON-compatible list.
|
| 63 |
"""
|
| 64 |
+
if not sentences:
|
| 65 |
+
raise ValueError("The input list of sentences must not be empty.")
|
| 66 |
+
|
| 67 |
embeddings = all_MiniLM_L6_V2_model.encode(sentences)
|
| 68 |
return {"embeddings": embeddings.tolist()} # Return embeddings as a JSON-compatible list
|
| 69 |
|
|
|
|
| 79 |
Returns:
|
| 80 |
dict: A dictionary containing the embeddings as a JSON-compatible list.
|
| 81 |
"""
|
| 82 |
+
|
| 83 |
+
if not sentences:
|
| 84 |
+
raise ValueError("The input list of sentences must not be empty.")
|
| 85 |
+
|
| 86 |
embeddings = intfloat_e5_large_v2_model.encode(sentences)
|
| 87 |
return {"embeddings": embeddings.tolist()}
|