import torch import gradio as gr from transformers import ConvNextForImageClassification, AutoImageProcessor from PIL import Image class_names = ['Acne and Rosacea Photos', 'Actinic Keratosis Basal Cell Carcinoma and other Malignant Lesions', 'Atopic Dermatitis Photos', 'Bullous Disease Photos', 'Cellulitis Impetigo and other Bacterial Infections', 'Eczema Photos', 'Exanthems and Drug Eruptions', 'Hair Loss Photos Alopecia and other Hair Diseases', 'Herpes HPV and other STDs Photos', 'Light Diseases and Disorders of Pigmentation', 'Lupus and other Connective Tissue diseases', 'Melanoma Skin Cancer Nevi and Moles', 'Nail Fungus and other Nail Disease', 'Poison Ivy Photos and other Contact Dermatitis', 'Psoriasis pictures Lichen Planus and related diseases', 'Scabies Lyme Disease and other Infestations and Bites', 'Seborrheic Keratoses and other Benign Tumors', 'Systemic Disease', 'Tinea Ringworm Candidiasis and other Fungal Infections', 'Urticaria Hives', 'Vascular Tumors', 'Vasculitis Photos', 'Warts Molluscum and other Viral Infections'] model = ConvNextForImageClassification.from_pretrained("facebook/convnext-base-224") # Redefine classifier for 23 classes model.classifier = torch.nn.Linear(in_features=1024, out_features=23) # Load model configuration and weights manually model.load_state_dict(torch.load("convnext_base_finetuned.pth", map_location="cpu")) # Load your finetuned weights model.eval() # Load the processor processor = AutoImageProcessor.from_pretrained("facebook/convnext-base-224") # Define a function to predict the class from an image def predict(image): # Preprocess the image inputs = processor(images=image, return_tensors="pt") # Perform inference with torch.no_grad(): outputs = model(**inputs) predicted_class = torch.argmax(outputs.logits, dim=1).item() return class_names[predicted_class] # Create Gradio interface for user input iface = gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs=gr.Textbox()) iface.launch()