Spaces:
Running
Running
import torch | |
import gradio as gr | |
from transformers import ConvNextForImageClassification, AutoImageProcessor | |
from PIL import Image | |
# Load model configuration and weights manually | |
model = ConvNextForImageClassification.from_pretrained("facebook/convnext-base-224") # Load the base model | |
model.load_state_dict(torch.load("convnext_base_finetuned.pth", map_location="cpu")) # Load your finetuned weights | |
model.eval() | |
# Load the processor | |
processor = AutoImageProcessor.from_pretrained("facebook/convnext-base-224") | |
# Define a function to predict the class from an image | |
def predict(image): | |
# Preprocess the image | |
inputs = processor(images=image, return_tensors="pt") | |
# Perform inference | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
predicted_class = torch.argmax(outputs.logits, dim=1).item() | |
return predicted_class | |
# Create Gradio interface for user input | |
iface = gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs=gr.Textbox()) | |
iface.launch() | |