Spaces:
Runtime error
Runtime error
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| # Adapted from https://botorch.org/api/_modules/botorch/utils/torch.html | |
| # TODO: To be removed once (if) https://github.com/pytorch/pytorch/pull/37385 lands | |
| from __future__ import annotations | |
| import collections | |
| from collections import OrderedDict | |
| import torch | |
| from torch.nn import Module | |
| class BufferDict(Module): | |
| r""" | |
| Holds buffers in a dictionary. | |
| BufferDict can be indexed like a regular Python dictionary, but buffers it contains are properly registered, and | |
| will be visible by all Module methods. `torch.nn.BufferDict` is an **ordered** dictionary that respects | |
| * the order of insertion, and | |
| * in `torch.nn.BufferDict.update`, the order of the merged `OrderedDict` or another `torch.nn.BufferDict` (the | |
| argument to `torch.nn.BufferDict.update`). | |
| Note that `torch.nn.BufferDict.update` with other unordered mapping types (e.g., Python's plain `dict`) does not | |
| preserve the order of the merged mapping. | |
| Args: | |
| buffers (iterable, optional): | |
| a mapping (dictionary) of (string : `torch.Tensor`) or an iterable of key-value pairs of type (string, | |
| `torch.Tensor`) | |
| ```python | |
| class MyModule(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| self.buffers = nn.BufferDict({"left": torch.randn(5, 10), "right": torch.randn(5, 10)}) | |
| def forward(self, x, choice): | |
| x = self.buffers[choice].mm(x) | |
| return x | |
| ``` | |
| """ | |
| def __init__(self, buffers=None, persistent: bool = False): | |
| r""" | |
| Args: | |
| buffers (`dict`): | |
| A mapping (dictionary) from string to `torch.Tensor`, or an iterable of key-value pairs of type | |
| (string, `torch.Tensor`). | |
| """ | |
| super().__init__() | |
| if buffers is not None: | |
| self.update(buffers) | |
| self.persistent = persistent | |
| def __getitem__(self, key): | |
| return self._buffers[key] | |
| def __setitem__(self, key, buffer): | |
| self.register_buffer(key, buffer, persistent=self.persistent) | |
| def __delitem__(self, key): | |
| del self._buffers[key] | |
| def __len__(self): | |
| return len(self._buffers) | |
| def __iter__(self): | |
| return iter(self._buffers.keys()) | |
| def __contains__(self, key): | |
| return key in self._buffers | |
| def clear(self): | |
| """Remove all items from the BufferDict.""" | |
| self._buffers.clear() | |
| def pop(self, key): | |
| r"""Remove key from the BufferDict and return its buffer. | |
| Args: | |
| key (`str`): | |
| Key to pop from the BufferDict | |
| """ | |
| v = self[key] | |
| del self[key] | |
| return v | |
| def keys(self): | |
| r"""Return an iterable of the BufferDict keys.""" | |
| return self._buffers.keys() | |
| def items(self): | |
| r"""Return an iterable of the BufferDict key/value pairs.""" | |
| return self._buffers.items() | |
| def values(self): | |
| r"""Return an iterable of the BufferDict values.""" | |
| return self._buffers.values() | |
| def update(self, buffers): | |
| r""" | |
| Update the `torch.nn.BufferDict` with the key-value pairs from a mapping or an iterable, overwriting existing | |
| keys. | |
| Note: | |
| If `buffers` is an `OrderedDict`, a `torch.nn.BufferDict`, or an iterable of key-value pairs, the order of | |
| new elements in it is preserved. | |
| Args: | |
| buffers (iterable): | |
| a mapping (dictionary) from string to `torch.Tensor`, or an iterable of key-value pairs of type | |
| (string, `torch.Tensor`). | |
| """ | |
| if not isinstance(buffers, collections.abc.Iterable): | |
| raise TypeError( | |
| "BuffersDict.update should be called with an " | |
| "iterable of key/value pairs, but got " + type(buffers).__name__ | |
| ) | |
| if isinstance(buffers, collections.abc.Mapping): | |
| if isinstance(buffers, (OrderedDict, BufferDict)): | |
| for key, buffer in buffers.items(): | |
| self[key] = buffer | |
| else: | |
| for key, buffer in sorted(buffers.items()): | |
| self[key] = buffer | |
| else: | |
| for j, p in enumerate(buffers): | |
| if not isinstance(p, collections.abc.Iterable): | |
| raise TypeError( | |
| "BufferDict update sequence element " | |
| "#" + str(j) + " should be Iterable; is" + type(p).__name__ | |
| ) | |
| if not len(p) == 2: | |
| raise ValueError( | |
| "BufferDict update sequence element " | |
| "#" + str(j) + " has length " + str(len(p)) + "; 2 is required" | |
| ) | |
| self[p[0]] = p[1] | |
| def extra_repr(self): | |
| child_lines = [] | |
| for k, p in self._buffers.items(): | |
| size_str = "x".join(str(size) for size in p.size()) | |
| device_str = "" if not p.is_cuda else f" (GPU {p.get_device()})" | |
| parastr = f"Buffer containing: [{torch.typename(p)} of size {size_str}{device_str}]" | |
| child_lines.append(" (" + k + "): " + parastr) | |
| tmpstr = "\n".join(child_lines) | |
| return tmpstr | |
| def __call__(self, input): | |
| raise RuntimeError("BufferDict should not be called.") | |