Spaces:
Runtime error
Runtime error
| # Copyright 2024-present the HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import warnings | |
| from copy import deepcopy | |
| from typing import List, Optional | |
| import torch | |
| import torch.nn as nn | |
| from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge | |
| class LNTuningLayer(nn.Module, BaseTunerLayer): | |
| """ | |
| Selects a layer from the model. | |
| """ | |
| adapter_layer_names = ("ln_tuning_layers",) | |
| def __init__(self, base_layer: nn.Module, adapter_name: str): | |
| super().__init__() | |
| self.base_layer = base_layer | |
| self.ln_tuning_layers = nn.ModuleDict({}) | |
| self.update_layer(self.base_layer, adapter_name) | |
| self._active_adapter = adapter_name | |
| self.merged_adapters = [] | |
| def update_layer(self, layer: nn.Module, adapter_name: str): | |
| self.ln_tuning_layers[adapter_name] = deepcopy(layer) | |
| def enable_adapters(self, enabled: bool) -> None: | |
| """Toggle the enabling and disabling of adapters | |
| Takes care of setting the requires_grad flag for the adapter weights. | |
| Args: | |
| enabled (bool): True to enable adapters, False to disable adapters | |
| """ | |
| if enabled: | |
| self.set_adapter(self.active_adapters) | |
| self._disable_adapters = False | |
| else: | |
| if self.merged: | |
| self.unmerge() | |
| # disable grads on all adapter layers | |
| for layer_name in self.adapter_layer_names: | |
| layer = getattr(self, layer_name) | |
| layer.requires_grad_(False) | |
| self._disable_adapters = True | |
| def merge(self, adapter_names: Optional[List[str]] = None): | |
| adapter_names = check_adapters_to_merge(self, adapter_names) | |
| if not adapter_names: | |
| # no adapter to merge | |
| return | |
| if len(adapter_names) > 1: | |
| raise ValueError( | |
| f"Trying to merge {len(adapter_names)} adapters, but LN " | |
| f"tuning does not allow merging more than one adapter at a time" | |
| ) | |
| merged_adapters = set(self.merged_adapters) | |
| if merged_adapters: | |
| warnings.warn(f"Already merged with {merged_adapters}. Unmerging first.") | |
| self.unmerge() | |
| self.base_layer, self.ln_tuning_layers[adapter_names[0]] = ( | |
| self.ln_tuning_layers[adapter_names[0]], | |
| self.base_layer, | |
| ) | |
| self.merged_adapters.append(adapter_names[0]) | |
| def unmerge(self): | |
| if not self.merged: | |
| warnings.warn("Already unmerged. Nothing to do.") | |
| return | |
| # popping one element is sufficient because LN | |
| # tuning does not allow merging more than one adapter at a time. | |
| merged_name = self.merged_adapters.pop() | |
| self.base_layer, self.ln_tuning_layers[merged_name] = ( | |
| self.ln_tuning_layers[merged_name], | |
| self.base_layer, | |
| ) | |
| def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: | |
| if self.disable_adapters: | |
| if self.merged: | |
| self.unmerge() | |
| result = self.base_layer(x, *args, **kwargs) | |
| elif self.merged: | |
| result = self.base_layer(x, *args, **kwargs) | |
| else: | |
| if len(self.active_adapters) != 1: | |
| raise ValueError( | |
| f"Trying to run forward with {len(self.active_adapters)} active " | |
| f"adapters, but LN tuning does not allow inference with more than one adapter at a time" | |
| ) | |
| active_adapter = self.active_adapters[0] | |
| result = self.ln_tuning_layers[active_adapter](x, *args, **kwargs) | |
| return result | |
| def __repr__(self) -> str: | |
| rep = super().__repr__() | |
| return "ln_tuning." + rep | |