Spaces:
Running
on
Zero
Running
on
Zero
| import inspect | |
| import os | |
| from argparse import ArgumentParser | |
| import numpy as np | |
| import torch | |
| from muse import MaskGiTUViT, VQGANModel | |
| from muse import PipelineMuse as OldPipelineMuse | |
| from transformers import CLIPTextModelWithProjection, CLIPTokenizer | |
| from diffusers import VQModel | |
| from diffusers.models.attention_processor import AttnProcessor | |
| from diffusers.models.unets.uvit_2d import UVit2DModel | |
| from diffusers.pipelines.amused.pipeline_amused import AmusedPipeline | |
| from diffusers.schedulers import AmusedScheduler | |
| torch.backends.cuda.enable_flash_sdp(False) | |
| torch.backends.cuda.enable_mem_efficient_sdp(False) | |
| torch.backends.cuda.enable_math_sdp(True) | |
| os.environ["CUDA_LAUNCH_BLOCKING"] = "1" | |
| os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8" | |
| torch.use_deterministic_algorithms(True) | |
| # Enable CUDNN deterministic mode | |
| torch.backends.cudnn.deterministic = True | |
| torch.backends.cudnn.benchmark = False | |
| torch.backends.cuda.matmul.allow_tf32 = False | |
| device = "cuda" | |
| def main(): | |
| args = ArgumentParser() | |
| args.add_argument("--model_256", action="store_true") | |
| args.add_argument("--write_to", type=str, required=False, default=None) | |
| args.add_argument("--transformer_path", type=str, required=False, default=None) | |
| args = args.parse_args() | |
| transformer_path = args.transformer_path | |
| subfolder = "transformer" | |
| if transformer_path is None: | |
| if args.model_256: | |
| transformer_path = "openMUSE/muse-256" | |
| else: | |
| transformer_path = ( | |
| "../research-run-512-checkpoints/research-run-512-with-downsample-checkpoint-554000/unwrapped_model/" | |
| ) | |
| subfolder = None | |
| old_transformer = MaskGiTUViT.from_pretrained(transformer_path, subfolder=subfolder) | |
| old_transformer.to(device) | |
| old_vae = VQGANModel.from_pretrained("openMUSE/muse-512", subfolder="vae") | |
| old_vae.to(device) | |
| vqvae = make_vqvae(old_vae) | |
| tokenizer = CLIPTokenizer.from_pretrained("openMUSE/muse-512", subfolder="text_encoder") | |
| text_encoder = CLIPTextModelWithProjection.from_pretrained("openMUSE/muse-512", subfolder="text_encoder") | |
| text_encoder.to(device) | |
| transformer = make_transformer(old_transformer, args.model_256) | |
| scheduler = AmusedScheduler(mask_token_id=old_transformer.config.mask_token_id) | |
| new_pipe = AmusedPipeline( | |
| vqvae=vqvae, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, scheduler=scheduler | |
| ) | |
| old_pipe = OldPipelineMuse( | |
| vae=old_vae, transformer=old_transformer, text_encoder=text_encoder, tokenizer=tokenizer | |
| ) | |
| old_pipe.to(device) | |
| if args.model_256: | |
| transformer_seq_len = 256 | |
| orig_size = (256, 256) | |
| else: | |
| transformer_seq_len = 1024 | |
| orig_size = (512, 512) | |
| old_out = old_pipe( | |
| "dog", | |
| generator=torch.Generator(device).manual_seed(0), | |
| transformer_seq_len=transformer_seq_len, | |
| orig_size=orig_size, | |
| timesteps=12, | |
| )[0] | |
| new_out = new_pipe("dog", generator=torch.Generator(device).manual_seed(0)).images[0] | |
| old_out = np.array(old_out) | |
| new_out = np.array(new_out) | |
| diff = np.abs(old_out.astype(np.float64) - new_out.astype(np.float64)) | |
| # assert diff diff.sum() == 0 | |
| print("skipping pipeline full equivalence check") | |
| print(f"max diff: {diff.max()}, diff.sum() / diff.size {diff.sum() / diff.size}") | |
| if args.model_256: | |
| assert diff.max() <= 3 | |
| assert diff.sum() / diff.size < 0.7 | |
| else: | |
| assert diff.max() <= 1 | |
| assert diff.sum() / diff.size < 0.4 | |
| if args.write_to is not None: | |
| new_pipe.save_pretrained(args.write_to) | |
| def make_transformer(old_transformer, model_256): | |
| args = dict(old_transformer.config) | |
| force_down_up_sample = args["force_down_up_sample"] | |
| signature = inspect.signature(UVit2DModel.__init__) | |
| args_ = { | |
| "downsample": force_down_up_sample, | |
| "upsample": force_down_up_sample, | |
| "block_out_channels": args["block_out_channels"][0], | |
| "sample_size": 16 if model_256 else 32, | |
| } | |
| for s in list(signature.parameters.keys()): | |
| if s in ["self", "downsample", "upsample", "sample_size", "block_out_channels"]: | |
| continue | |
| args_[s] = args[s] | |
| new_transformer = UVit2DModel(**args_) | |
| new_transformer.to(device) | |
| new_transformer.set_attn_processor(AttnProcessor()) | |
| state_dict = old_transformer.state_dict() | |
| state_dict["cond_embed.linear_1.weight"] = state_dict.pop("cond_embed.0.weight") | |
| state_dict["cond_embed.linear_2.weight"] = state_dict.pop("cond_embed.2.weight") | |
| for i in range(22): | |
| state_dict[f"transformer_layers.{i}.norm1.norm.weight"] = state_dict.pop( | |
| f"transformer_layers.{i}.attn_layer_norm.weight" | |
| ) | |
| state_dict[f"transformer_layers.{i}.norm1.linear.weight"] = state_dict.pop( | |
| f"transformer_layers.{i}.self_attn_adaLN_modulation.mapper.weight" | |
| ) | |
| state_dict[f"transformer_layers.{i}.attn1.to_q.weight"] = state_dict.pop( | |
| f"transformer_layers.{i}.attention.query.weight" | |
| ) | |
| state_dict[f"transformer_layers.{i}.attn1.to_k.weight"] = state_dict.pop( | |
| f"transformer_layers.{i}.attention.key.weight" | |
| ) | |
| state_dict[f"transformer_layers.{i}.attn1.to_v.weight"] = state_dict.pop( | |
| f"transformer_layers.{i}.attention.value.weight" | |
| ) | |
| state_dict[f"transformer_layers.{i}.attn1.to_out.0.weight"] = state_dict.pop( | |
| f"transformer_layers.{i}.attention.out.weight" | |
| ) | |
| state_dict[f"transformer_layers.{i}.norm2.norm.weight"] = state_dict.pop( | |
| f"transformer_layers.{i}.crossattn_layer_norm.weight" | |
| ) | |
| state_dict[f"transformer_layers.{i}.norm2.linear.weight"] = state_dict.pop( | |
| f"transformer_layers.{i}.cross_attn_adaLN_modulation.mapper.weight" | |
| ) | |
| state_dict[f"transformer_layers.{i}.attn2.to_q.weight"] = state_dict.pop( | |
| f"transformer_layers.{i}.crossattention.query.weight" | |
| ) | |
| state_dict[f"transformer_layers.{i}.attn2.to_k.weight"] = state_dict.pop( | |
| f"transformer_layers.{i}.crossattention.key.weight" | |
| ) | |
| state_dict[f"transformer_layers.{i}.attn2.to_v.weight"] = state_dict.pop( | |
| f"transformer_layers.{i}.crossattention.value.weight" | |
| ) | |
| state_dict[f"transformer_layers.{i}.attn2.to_out.0.weight"] = state_dict.pop( | |
| f"transformer_layers.{i}.crossattention.out.weight" | |
| ) | |
| state_dict[f"transformer_layers.{i}.norm3.norm.weight"] = state_dict.pop( | |
| f"transformer_layers.{i}.ffn.pre_mlp_layer_norm.weight" | |
| ) | |
| state_dict[f"transformer_layers.{i}.norm3.linear.weight"] = state_dict.pop( | |
| f"transformer_layers.{i}.ffn.adaLN_modulation.mapper.weight" | |
| ) | |
| wi_0_weight = state_dict.pop(f"transformer_layers.{i}.ffn.wi_0.weight") | |
| wi_1_weight = state_dict.pop(f"transformer_layers.{i}.ffn.wi_1.weight") | |
| proj_weight = torch.concat([wi_1_weight, wi_0_weight], dim=0) | |
| state_dict[f"transformer_layers.{i}.ff.net.0.proj.weight"] = proj_weight | |
| state_dict[f"transformer_layers.{i}.ff.net.2.weight"] = state_dict.pop(f"transformer_layers.{i}.ffn.wo.weight") | |
| if force_down_up_sample: | |
| state_dict["down_block.downsample.norm.weight"] = state_dict.pop("down_blocks.0.downsample.0.norm.weight") | |
| state_dict["down_block.downsample.conv.weight"] = state_dict.pop("down_blocks.0.downsample.1.weight") | |
| state_dict["up_block.upsample.norm.weight"] = state_dict.pop("up_blocks.0.upsample.0.norm.weight") | |
| state_dict["up_block.upsample.conv.weight"] = state_dict.pop("up_blocks.0.upsample.1.weight") | |
| state_dict["mlm_layer.layer_norm.weight"] = state_dict.pop("mlm_layer.layer_norm.norm.weight") | |
| for i in range(3): | |
| state_dict[f"down_block.res_blocks.{i}.norm.weight"] = state_dict.pop( | |
| f"down_blocks.0.res_blocks.{i}.norm.norm.weight" | |
| ) | |
| state_dict[f"down_block.res_blocks.{i}.channelwise_linear_1.weight"] = state_dict.pop( | |
| f"down_blocks.0.res_blocks.{i}.channelwise.0.weight" | |
| ) | |
| state_dict[f"down_block.res_blocks.{i}.channelwise_norm.gamma"] = state_dict.pop( | |
| f"down_blocks.0.res_blocks.{i}.channelwise.2.gamma" | |
| ) | |
| state_dict[f"down_block.res_blocks.{i}.channelwise_norm.beta"] = state_dict.pop( | |
| f"down_blocks.0.res_blocks.{i}.channelwise.2.beta" | |
| ) | |
| state_dict[f"down_block.res_blocks.{i}.channelwise_linear_2.weight"] = state_dict.pop( | |
| f"down_blocks.0.res_blocks.{i}.channelwise.4.weight" | |
| ) | |
| state_dict[f"down_block.res_blocks.{i}.cond_embeds_mapper.weight"] = state_dict.pop( | |
| f"down_blocks.0.res_blocks.{i}.adaLN_modulation.mapper.weight" | |
| ) | |
| state_dict[f"down_block.attention_blocks.{i}.norm1.weight"] = state_dict.pop( | |
| f"down_blocks.0.attention_blocks.{i}.attn_layer_norm.weight" | |
| ) | |
| state_dict[f"down_block.attention_blocks.{i}.attn1.to_q.weight"] = state_dict.pop( | |
| f"down_blocks.0.attention_blocks.{i}.attention.query.weight" | |
| ) | |
| state_dict[f"down_block.attention_blocks.{i}.attn1.to_k.weight"] = state_dict.pop( | |
| f"down_blocks.0.attention_blocks.{i}.attention.key.weight" | |
| ) | |
| state_dict[f"down_block.attention_blocks.{i}.attn1.to_v.weight"] = state_dict.pop( | |
| f"down_blocks.0.attention_blocks.{i}.attention.value.weight" | |
| ) | |
| state_dict[f"down_block.attention_blocks.{i}.attn1.to_out.0.weight"] = state_dict.pop( | |
| f"down_blocks.0.attention_blocks.{i}.attention.out.weight" | |
| ) | |
| state_dict[f"down_block.attention_blocks.{i}.norm2.weight"] = state_dict.pop( | |
| f"down_blocks.0.attention_blocks.{i}.crossattn_layer_norm.weight" | |
| ) | |
| state_dict[f"down_block.attention_blocks.{i}.attn2.to_q.weight"] = state_dict.pop( | |
| f"down_blocks.0.attention_blocks.{i}.crossattention.query.weight" | |
| ) | |
| state_dict[f"down_block.attention_blocks.{i}.attn2.to_k.weight"] = state_dict.pop( | |
| f"down_blocks.0.attention_blocks.{i}.crossattention.key.weight" | |
| ) | |
| state_dict[f"down_block.attention_blocks.{i}.attn2.to_v.weight"] = state_dict.pop( | |
| f"down_blocks.0.attention_blocks.{i}.crossattention.value.weight" | |
| ) | |
| state_dict[f"down_block.attention_blocks.{i}.attn2.to_out.0.weight"] = state_dict.pop( | |
| f"down_blocks.0.attention_blocks.{i}.crossattention.out.weight" | |
| ) | |
| state_dict[f"up_block.res_blocks.{i}.norm.weight"] = state_dict.pop( | |
| f"up_blocks.0.res_blocks.{i}.norm.norm.weight" | |
| ) | |
| state_dict[f"up_block.res_blocks.{i}.channelwise_linear_1.weight"] = state_dict.pop( | |
| f"up_blocks.0.res_blocks.{i}.channelwise.0.weight" | |
| ) | |
| state_dict[f"up_block.res_blocks.{i}.channelwise_norm.gamma"] = state_dict.pop( | |
| f"up_blocks.0.res_blocks.{i}.channelwise.2.gamma" | |
| ) | |
| state_dict[f"up_block.res_blocks.{i}.channelwise_norm.beta"] = state_dict.pop( | |
| f"up_blocks.0.res_blocks.{i}.channelwise.2.beta" | |
| ) | |
| state_dict[f"up_block.res_blocks.{i}.channelwise_linear_2.weight"] = state_dict.pop( | |
| f"up_blocks.0.res_blocks.{i}.channelwise.4.weight" | |
| ) | |
| state_dict[f"up_block.res_blocks.{i}.cond_embeds_mapper.weight"] = state_dict.pop( | |
| f"up_blocks.0.res_blocks.{i}.adaLN_modulation.mapper.weight" | |
| ) | |
| state_dict[f"up_block.attention_blocks.{i}.norm1.weight"] = state_dict.pop( | |
| f"up_blocks.0.attention_blocks.{i}.attn_layer_norm.weight" | |
| ) | |
| state_dict[f"up_block.attention_blocks.{i}.attn1.to_q.weight"] = state_dict.pop( | |
| f"up_blocks.0.attention_blocks.{i}.attention.query.weight" | |
| ) | |
| state_dict[f"up_block.attention_blocks.{i}.attn1.to_k.weight"] = state_dict.pop( | |
| f"up_blocks.0.attention_blocks.{i}.attention.key.weight" | |
| ) | |
| state_dict[f"up_block.attention_blocks.{i}.attn1.to_v.weight"] = state_dict.pop( | |
| f"up_blocks.0.attention_blocks.{i}.attention.value.weight" | |
| ) | |
| state_dict[f"up_block.attention_blocks.{i}.attn1.to_out.0.weight"] = state_dict.pop( | |
| f"up_blocks.0.attention_blocks.{i}.attention.out.weight" | |
| ) | |
| state_dict[f"up_block.attention_blocks.{i}.norm2.weight"] = state_dict.pop( | |
| f"up_blocks.0.attention_blocks.{i}.crossattn_layer_norm.weight" | |
| ) | |
| state_dict[f"up_block.attention_blocks.{i}.attn2.to_q.weight"] = state_dict.pop( | |
| f"up_blocks.0.attention_blocks.{i}.crossattention.query.weight" | |
| ) | |
| state_dict[f"up_block.attention_blocks.{i}.attn2.to_k.weight"] = state_dict.pop( | |
| f"up_blocks.0.attention_blocks.{i}.crossattention.key.weight" | |
| ) | |
| state_dict[f"up_block.attention_blocks.{i}.attn2.to_v.weight"] = state_dict.pop( | |
| f"up_blocks.0.attention_blocks.{i}.crossattention.value.weight" | |
| ) | |
| state_dict[f"up_block.attention_blocks.{i}.attn2.to_out.0.weight"] = state_dict.pop( | |
| f"up_blocks.0.attention_blocks.{i}.crossattention.out.weight" | |
| ) | |
| for key in list(state_dict.keys()): | |
| if key.startswith("up_blocks.0"): | |
| key_ = "up_block." + ".".join(key.split(".")[2:]) | |
| state_dict[key_] = state_dict.pop(key) | |
| if key.startswith("down_blocks.0"): | |
| key_ = "down_block." + ".".join(key.split(".")[2:]) | |
| state_dict[key_] = state_dict.pop(key) | |
| new_transformer.load_state_dict(state_dict) | |
| input_ids = torch.randint(0, 10, (1, 32, 32), device=old_transformer.device) | |
| encoder_hidden_states = torch.randn((1, 77, 768), device=old_transformer.device) | |
| cond_embeds = torch.randn((1, 768), device=old_transformer.device) | |
| micro_conds = torch.tensor([[512, 512, 0, 0, 6]], dtype=torch.float32, device=old_transformer.device) | |
| old_out = old_transformer(input_ids.reshape(1, -1), encoder_hidden_states, cond_embeds, micro_conds) | |
| old_out = old_out.reshape(1, 32, 32, 8192).permute(0, 3, 1, 2) | |
| new_out = new_transformer(input_ids, encoder_hidden_states, cond_embeds, micro_conds) | |
| # NOTE: these differences are solely due to using the geglu block that has a single linear layer of | |
| # double output dimension instead of two different linear layers | |
| max_diff = (old_out - new_out).abs().max() | |
| total_diff = (old_out - new_out).abs().sum() | |
| print(f"Transformer max_diff: {max_diff} total_diff: {total_diff}") | |
| assert max_diff < 0.01 | |
| assert total_diff < 1500 | |
| return new_transformer | |
| def make_vqvae(old_vae): | |
| new_vae = VQModel( | |
| act_fn="silu", | |
| block_out_channels=[128, 256, 256, 512, 768], | |
| down_block_types=[ | |
| "DownEncoderBlock2D", | |
| "DownEncoderBlock2D", | |
| "DownEncoderBlock2D", | |
| "DownEncoderBlock2D", | |
| "DownEncoderBlock2D", | |
| ], | |
| in_channels=3, | |
| latent_channels=64, | |
| layers_per_block=2, | |
| norm_num_groups=32, | |
| num_vq_embeddings=8192, | |
| out_channels=3, | |
| sample_size=32, | |
| up_block_types=[ | |
| "UpDecoderBlock2D", | |
| "UpDecoderBlock2D", | |
| "UpDecoderBlock2D", | |
| "UpDecoderBlock2D", | |
| "UpDecoderBlock2D", | |
| ], | |
| mid_block_add_attention=False, | |
| lookup_from_codebook=True, | |
| ) | |
| new_vae.to(device) | |
| # fmt: off | |
| new_state_dict = {} | |
| old_state_dict = old_vae.state_dict() | |
| new_state_dict["encoder.conv_in.weight"] = old_state_dict.pop("encoder.conv_in.weight") | |
| new_state_dict["encoder.conv_in.bias"] = old_state_dict.pop("encoder.conv_in.bias") | |
| convert_vae_block_state_dict(old_state_dict, "encoder.down.0", new_state_dict, "encoder.down_blocks.0") | |
| convert_vae_block_state_dict(old_state_dict, "encoder.down.1", new_state_dict, "encoder.down_blocks.1") | |
| convert_vae_block_state_dict(old_state_dict, "encoder.down.2", new_state_dict, "encoder.down_blocks.2") | |
| convert_vae_block_state_dict(old_state_dict, "encoder.down.3", new_state_dict, "encoder.down_blocks.3") | |
| convert_vae_block_state_dict(old_state_dict, "encoder.down.4", new_state_dict, "encoder.down_blocks.4") | |
| new_state_dict["encoder.mid_block.resnets.0.norm1.weight"] = old_state_dict.pop("encoder.mid.block_1.norm1.weight") | |
| new_state_dict["encoder.mid_block.resnets.0.norm1.bias"] = old_state_dict.pop("encoder.mid.block_1.norm1.bias") | |
| new_state_dict["encoder.mid_block.resnets.0.conv1.weight"] = old_state_dict.pop("encoder.mid.block_1.conv1.weight") | |
| new_state_dict["encoder.mid_block.resnets.0.conv1.bias"] = old_state_dict.pop("encoder.mid.block_1.conv1.bias") | |
| new_state_dict["encoder.mid_block.resnets.0.norm2.weight"] = old_state_dict.pop("encoder.mid.block_1.norm2.weight") | |
| new_state_dict["encoder.mid_block.resnets.0.norm2.bias"] = old_state_dict.pop("encoder.mid.block_1.norm2.bias") | |
| new_state_dict["encoder.mid_block.resnets.0.conv2.weight"] = old_state_dict.pop("encoder.mid.block_1.conv2.weight") | |
| new_state_dict["encoder.mid_block.resnets.0.conv2.bias"] = old_state_dict.pop("encoder.mid.block_1.conv2.bias") | |
| new_state_dict["encoder.mid_block.resnets.1.norm1.weight"] = old_state_dict.pop("encoder.mid.block_2.norm1.weight") | |
| new_state_dict["encoder.mid_block.resnets.1.norm1.bias"] = old_state_dict.pop("encoder.mid.block_2.norm1.bias") | |
| new_state_dict["encoder.mid_block.resnets.1.conv1.weight"] = old_state_dict.pop("encoder.mid.block_2.conv1.weight") | |
| new_state_dict["encoder.mid_block.resnets.1.conv1.bias"] = old_state_dict.pop("encoder.mid.block_2.conv1.bias") | |
| new_state_dict["encoder.mid_block.resnets.1.norm2.weight"] = old_state_dict.pop("encoder.mid.block_2.norm2.weight") | |
| new_state_dict["encoder.mid_block.resnets.1.norm2.bias"] = old_state_dict.pop("encoder.mid.block_2.norm2.bias") | |
| new_state_dict["encoder.mid_block.resnets.1.conv2.weight"] = old_state_dict.pop("encoder.mid.block_2.conv2.weight") | |
| new_state_dict["encoder.mid_block.resnets.1.conv2.bias"] = old_state_dict.pop("encoder.mid.block_2.conv2.bias") | |
| new_state_dict["encoder.conv_norm_out.weight"] = old_state_dict.pop("encoder.norm_out.weight") | |
| new_state_dict["encoder.conv_norm_out.bias"] = old_state_dict.pop("encoder.norm_out.bias") | |
| new_state_dict["encoder.conv_out.weight"] = old_state_dict.pop("encoder.conv_out.weight") | |
| new_state_dict["encoder.conv_out.bias"] = old_state_dict.pop("encoder.conv_out.bias") | |
| new_state_dict["quant_conv.weight"] = old_state_dict.pop("quant_conv.weight") | |
| new_state_dict["quant_conv.bias"] = old_state_dict.pop("quant_conv.bias") | |
| new_state_dict["quantize.embedding.weight"] = old_state_dict.pop("quantize.embedding.weight") | |
| new_state_dict["post_quant_conv.weight"] = old_state_dict.pop("post_quant_conv.weight") | |
| new_state_dict["post_quant_conv.bias"] = old_state_dict.pop("post_quant_conv.bias") | |
| new_state_dict["decoder.conv_in.weight"] = old_state_dict.pop("decoder.conv_in.weight") | |
| new_state_dict["decoder.conv_in.bias"] = old_state_dict.pop("decoder.conv_in.bias") | |
| new_state_dict["decoder.mid_block.resnets.0.norm1.weight"] = old_state_dict.pop("decoder.mid.block_1.norm1.weight") | |
| new_state_dict["decoder.mid_block.resnets.0.norm1.bias"] = old_state_dict.pop("decoder.mid.block_1.norm1.bias") | |
| new_state_dict["decoder.mid_block.resnets.0.conv1.weight"] = old_state_dict.pop("decoder.mid.block_1.conv1.weight") | |
| new_state_dict["decoder.mid_block.resnets.0.conv1.bias"] = old_state_dict.pop("decoder.mid.block_1.conv1.bias") | |
| new_state_dict["decoder.mid_block.resnets.0.norm2.weight"] = old_state_dict.pop("decoder.mid.block_1.norm2.weight") | |
| new_state_dict["decoder.mid_block.resnets.0.norm2.bias"] = old_state_dict.pop("decoder.mid.block_1.norm2.bias") | |
| new_state_dict["decoder.mid_block.resnets.0.conv2.weight"] = old_state_dict.pop("decoder.mid.block_1.conv2.weight") | |
| new_state_dict["decoder.mid_block.resnets.0.conv2.bias"] = old_state_dict.pop("decoder.mid.block_1.conv2.bias") | |
| new_state_dict["decoder.mid_block.resnets.1.norm1.weight"] = old_state_dict.pop("decoder.mid.block_2.norm1.weight") | |
| new_state_dict["decoder.mid_block.resnets.1.norm1.bias"] = old_state_dict.pop("decoder.mid.block_2.norm1.bias") | |
| new_state_dict["decoder.mid_block.resnets.1.conv1.weight"] = old_state_dict.pop("decoder.mid.block_2.conv1.weight") | |
| new_state_dict["decoder.mid_block.resnets.1.conv1.bias"] = old_state_dict.pop("decoder.mid.block_2.conv1.bias") | |
| new_state_dict["decoder.mid_block.resnets.1.norm2.weight"] = old_state_dict.pop("decoder.mid.block_2.norm2.weight") | |
| new_state_dict["decoder.mid_block.resnets.1.norm2.bias"] = old_state_dict.pop("decoder.mid.block_2.norm2.bias") | |
| new_state_dict["decoder.mid_block.resnets.1.conv2.weight"] = old_state_dict.pop("decoder.mid.block_2.conv2.weight") | |
| new_state_dict["decoder.mid_block.resnets.1.conv2.bias"] = old_state_dict.pop("decoder.mid.block_2.conv2.bias") | |
| convert_vae_block_state_dict(old_state_dict, "decoder.up.0", new_state_dict, "decoder.up_blocks.4") | |
| convert_vae_block_state_dict(old_state_dict, "decoder.up.1", new_state_dict, "decoder.up_blocks.3") | |
| convert_vae_block_state_dict(old_state_dict, "decoder.up.2", new_state_dict, "decoder.up_blocks.2") | |
| convert_vae_block_state_dict(old_state_dict, "decoder.up.3", new_state_dict, "decoder.up_blocks.1") | |
| convert_vae_block_state_dict(old_state_dict, "decoder.up.4", new_state_dict, "decoder.up_blocks.0") | |
| new_state_dict["decoder.conv_norm_out.weight"] = old_state_dict.pop("decoder.norm_out.weight") | |
| new_state_dict["decoder.conv_norm_out.bias"] = old_state_dict.pop("decoder.norm_out.bias") | |
| new_state_dict["decoder.conv_out.weight"] = old_state_dict.pop("decoder.conv_out.weight") | |
| new_state_dict["decoder.conv_out.bias"] = old_state_dict.pop("decoder.conv_out.bias") | |
| # fmt: on | |
| assert len(old_state_dict.keys()) == 0 | |
| new_vae.load_state_dict(new_state_dict) | |
| input = torch.randn((1, 3, 512, 512), device=device) | |
| input = input.clamp(-1, 1) | |
| old_encoder_output = old_vae.quant_conv(old_vae.encoder(input)) | |
| new_encoder_output = new_vae.quant_conv(new_vae.encoder(input)) | |
| assert (old_encoder_output == new_encoder_output).all() | |
| old_decoder_output = old_vae.decoder(old_vae.post_quant_conv(old_encoder_output)) | |
| new_decoder_output = new_vae.decoder(new_vae.post_quant_conv(new_encoder_output)) | |
| # assert (old_decoder_output == new_decoder_output).all() | |
| print("kipping vae decoder equivalence check") | |
| print(f"vae decoder diff {(old_decoder_output - new_decoder_output).float().abs().sum()}") | |
| old_output = old_vae(input)[0] | |
| new_output = new_vae(input)[0] | |
| # assert (old_output == new_output).all() | |
| print("skipping full vae equivalence check") | |
| print(f"vae full diff { (old_output - new_output).float().abs().sum()}") | |
| return new_vae | |
| def convert_vae_block_state_dict(old_state_dict, prefix_from, new_state_dict, prefix_to): | |
| # fmt: off | |
| new_state_dict[f"{prefix_to}.resnets.0.norm1.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.norm1.weight") | |
| new_state_dict[f"{prefix_to}.resnets.0.norm1.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.norm1.bias") | |
| new_state_dict[f"{prefix_to}.resnets.0.conv1.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.conv1.weight") | |
| new_state_dict[f"{prefix_to}.resnets.0.conv1.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.conv1.bias") | |
| new_state_dict[f"{prefix_to}.resnets.0.norm2.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.norm2.weight") | |
| new_state_dict[f"{prefix_to}.resnets.0.norm2.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.norm2.bias") | |
| new_state_dict[f"{prefix_to}.resnets.0.conv2.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.conv2.weight") | |
| new_state_dict[f"{prefix_to}.resnets.0.conv2.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.conv2.bias") | |
| if f"{prefix_from}.block.0.nin_shortcut.weight" in old_state_dict: | |
| new_state_dict[f"{prefix_to}.resnets.0.conv_shortcut.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.nin_shortcut.weight") | |
| new_state_dict[f"{prefix_to}.resnets.0.conv_shortcut.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.nin_shortcut.bias") | |
| new_state_dict[f"{prefix_to}.resnets.1.norm1.weight"] = old_state_dict.pop(f"{prefix_from}.block.1.norm1.weight") | |
| new_state_dict[f"{prefix_to}.resnets.1.norm1.bias"] = old_state_dict.pop(f"{prefix_from}.block.1.norm1.bias") | |
| new_state_dict[f"{prefix_to}.resnets.1.conv1.weight"] = old_state_dict.pop(f"{prefix_from}.block.1.conv1.weight") | |
| new_state_dict[f"{prefix_to}.resnets.1.conv1.bias"] = old_state_dict.pop(f"{prefix_from}.block.1.conv1.bias") | |
| new_state_dict[f"{prefix_to}.resnets.1.norm2.weight"] = old_state_dict.pop(f"{prefix_from}.block.1.norm2.weight") | |
| new_state_dict[f"{prefix_to}.resnets.1.norm2.bias"] = old_state_dict.pop(f"{prefix_from}.block.1.norm2.bias") | |
| new_state_dict[f"{prefix_to}.resnets.1.conv2.weight"] = old_state_dict.pop(f"{prefix_from}.block.1.conv2.weight") | |
| new_state_dict[f"{prefix_to}.resnets.1.conv2.bias"] = old_state_dict.pop(f"{prefix_from}.block.1.conv2.bias") | |
| if f"{prefix_from}.downsample.conv.weight" in old_state_dict: | |
| new_state_dict[f"{prefix_to}.downsamplers.0.conv.weight"] = old_state_dict.pop(f"{prefix_from}.downsample.conv.weight") | |
| new_state_dict[f"{prefix_to}.downsamplers.0.conv.bias"] = old_state_dict.pop(f"{prefix_from}.downsample.conv.bias") | |
| if f"{prefix_from}.upsample.conv.weight" in old_state_dict: | |
| new_state_dict[f"{prefix_to}.upsamplers.0.conv.weight"] = old_state_dict.pop(f"{prefix_from}.upsample.conv.weight") | |
| new_state_dict[f"{prefix_to}.upsamplers.0.conv.bias"] = old_state_dict.pop(f"{prefix_from}.upsample.conv.bias") | |
| if f"{prefix_from}.block.2.norm1.weight" in old_state_dict: | |
| new_state_dict[f"{prefix_to}.resnets.2.norm1.weight"] = old_state_dict.pop(f"{prefix_from}.block.2.norm1.weight") | |
| new_state_dict[f"{prefix_to}.resnets.2.norm1.bias"] = old_state_dict.pop(f"{prefix_from}.block.2.norm1.bias") | |
| new_state_dict[f"{prefix_to}.resnets.2.conv1.weight"] = old_state_dict.pop(f"{prefix_from}.block.2.conv1.weight") | |
| new_state_dict[f"{prefix_to}.resnets.2.conv1.bias"] = old_state_dict.pop(f"{prefix_from}.block.2.conv1.bias") | |
| new_state_dict[f"{prefix_to}.resnets.2.norm2.weight"] = old_state_dict.pop(f"{prefix_from}.block.2.norm2.weight") | |
| new_state_dict[f"{prefix_to}.resnets.2.norm2.bias"] = old_state_dict.pop(f"{prefix_from}.block.2.norm2.bias") | |
| new_state_dict[f"{prefix_to}.resnets.2.conv2.weight"] = old_state_dict.pop(f"{prefix_from}.block.2.conv2.weight") | |
| new_state_dict[f"{prefix_to}.resnets.2.conv2.bias"] = old_state_dict.pop(f"{prefix_from}.block.2.conv2.bias") | |
| # fmt: on | |
| if __name__ == "__main__": | |
| main() | |