import os from io import BytesIO import base64 from functools import partial from PIL import Image, ImageOps import gradio as gr from makeavid_sd.inference import InferenceUNetPseudo3D, FlaxDPMSolverMultistepScheduler, jnp print(os.environ.get('XLA_PYTHON_CLIENT_PREALLOCATE', 'NotSet')) print(os.environ.get('XLA_PYTHON_CLIENT_ALLOCATOR', 'NotSet')) _preheat: bool = False _seen_compilations = set() _model = InferenceUNetPseudo3D( model_path = 'TempoFunk/makeavid-sd-jax', scheduler_cls = FlaxDPMSolverMultistepScheduler, dtype = jnp.float16, hf_auth_token = os.environ.get('HUGGING_FACE_HUB_TOKEN', None) ) if _model.failed != False: trace = f'```{_model.failed}```' with gr.Blocks(title = 'Make-A-Video Stable Diffusion JAX', analytics_enabled = False) as demo: exception = gr.Markdown(trace) demo.launch() # gradio is illiterate. type hints make it go poopoo in pantsu. def generate( prompt = 'An elderly man having a great time in the park.', neg_prompt = '', image = None, inference_steps = 20, cfg = 12.0, seed = 0, fps = 24, num_frames = 24, height = 512, width = 512 ) -> str: height = int(height) width = int(width) num_frames = int(num_frames) seed = int(seed) height = (height // 64) * 64 width = (width // 64) * 64 if seed < 0: seed = -seed inference_steps = int(inference_steps) hint_image = image if hint_image is not None: if hint_image.mode != 'RGB': hint_image = hint_image.convert('RGB') if hint_image.size != (width, height): hint_image = ImageOps.fit(hint_image, (width, height), method = Image.Resampling.LANCZOS) images = _model.generate( prompt = [prompt] * _model.device_count, neg_prompt = neg_prompt, hint_image = hint_image, mask_image = None, inference_steps = inference_steps, cfg = cfg, height = height, width = width, num_frames = num_frames, seed = seed ) _seen_compilations.add((hint_image is None, inference_steps, height, width, num_frames)) buffer = BytesIO() images[0].save( buffer, format = 'webp', save_all = True, append_images = images[1:], loop = 0, duration = round(1000 / fps), allow_mixed = True ) data = base64.b64encode(buffer.getvalue()).decode() data = 'data:image/webp;base64,' + data buffer.close() return data def check_if_compiled(image, inference_steps, height, width, num_frames, message): height = int(height) width = int(width) hint_image = None if image is None else image['image'] if (hint_image is None, inference_steps, height, width, num_frames) in _seen_compilations: return '' else: return f"""{message}""" if _preheat: print('\npreheating the oven') generate( prompt = 'preheating the oven', neg_prompt = '', image = { 'image': None, 'mask': None }, inference_steps = 20, cfg = 12.0, seed = 0 ) print('Entertaining the guests with sailor songs played on an old piano.') dada = generate( prompt = 'Entertaining the guests with sailor songs played on an old harmonium.', neg_prompt = '', image = { 'image': Image.new('RGB', size = (512, 512), color = (0, 0, 0)), 'mask': None }, inference_steps = 20, cfg = 12.0, seed = 0 ) print('dinner is ready\n') with gr.Blocks(title = 'Make-A-Video Stable Diffusion JAX', analytics_enabled = False) as demo: variant = 'panel' with gr.Row(): with gr.Column(): intro1 = gr.Markdown(""" # Make-A-Video Stable Diffusion JAX We have extended a pretrained LDM inpainting image generation model with temporal convolutions and attention. We take advantage of the extra 5 input channels of the inpaint model to guide the video generation with a hint image and mask. The hint image can be given by the user, otherwise it is generated by an generative image model. The temporal convolution and attention is a port of [Make-A-Video Pytorch](https://github.com/lucidrains/make-a-video-pytorch/blob/main/make_a_video_pytorch) to FLAX. It is a pseudo 3D convolution that seperately convolves accross the spatial dimension in 2D and over the temporal dimension in 1D. Temporal attention is purely self attention and also separately attends to time and space. Only the new temporal layers have been fine tuned on a dataset of videos themed around dance. The model has been trained for 60 epochs on a dataset of 10,000 Videos with 120 frames each, randomly selecting a 24 frame range from each sample. See model and dataset links in the metadata. Model implementation and training code can be found at [https://github.com/lopho/makeavid-sd-tpu](https://github.com/lopho/makeavid-sd-tpu) """) with gr.Column(): intro3 = gr.Markdown(""" **Please be patient. The model might have to compile with current parameters.** This can take up to 5 minutes on the first run, and 2-3 minutes on later runs. The compilation will be cached and consecutive runs with the same parameters will be much faster. Changes to the following parameters require the model to compile - Number of frames - Width & Height - Steps - Input image vs. no input image """) with gr.Row(variant = variant): with gr.Column(variant = variant): with gr.Row(): #cancel_button = gr.Button(value = 'Cancel') submit_button = gr.Button(value = 'Make A Video', variant = 'primary') prompt_input = gr.Textbox( label = 'Prompt', value = 'They are dancing in the club while sweat drips from the ceiling.', interactive = True ) neg_prompt_input = gr.Textbox( label = 'Negative prompt (optional)', value = '', interactive = True ) inference_steps_input = gr.Slider( label = 'Steps', minimum = 2, maximum = 100, value = 20, step = 1 ) cfg_input = gr.Slider( label = 'Guidance scale', minimum = 1.0, maximum = 20.0, step = 0.1, value = 15.0, interactive = True ) seed_input = gr.Number( label = 'Random seed', value = 0, interactive = True, precision = 0 ) image_input = gr.Image( label = 'Input image (optional)', interactive = True, image_mode = 'RGB', type = 'pil', optional = True, source = 'upload' ) num_frames_input = gr.Slider( label = 'Number of frames to generate', minimum = 1, maximum = 24, step = 1, value = 24 ) width_input = gr.Slider( label = 'Width', minimum = 64, maximum = 512, step = 64, value = 448 ) height_input = gr.Slider( label = 'Height', minimum = 64, maximum = 512, step = 64, value = 448 ) fps_input = gr.Slider( label = 'Output FPS', minimum = 1, maximum = 1000, step = 1, value = 12 ) with gr.Column(variant = variant): #no_gpu = gr.Markdown('**Until a GPU is assigned expect extremely long runtimes up to 1h+**') will_trigger = gr.Markdown('') patience = gr.Markdown('') image_output = gr.Image( label = 'Output', value = 'example.webp', interactive = False ) trigger_inputs = [ image_input, inference_steps_input, height_input, width_input, num_frames_input ] trigger_check_fun = partial(check_if_compiled, message = 'Current parameters will trigger compilation.') height_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger) width_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger) num_frames_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger) image_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger) inference_steps_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger) will_trigger.value = trigger_check_fun(image_input.value, inference_steps_input.value, height_input.value, width_input.value, num_frames_input.value) ev = submit_button.click( fn = partial( check_if_compiled, message = 'Please be patient. The model has to be compiled with current parameters.' ), inputs = trigger_inputs, outputs = patience ).then( fn = generate, inputs = [ prompt_input, neg_prompt_input, image_input, inference_steps_input, cfg_input, seed_input, fps_input, num_frames_input, height_input, width_input ], outputs = image_output, postprocess = False ).then( fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger ) #cancel_button.click(fn = lambda: None, cancels = ev) demo.queue(concurrency_count = 1, max_size = 32) demo.launch()