import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange class Pseudo3DConv(nn.Module): def __init__( self, dim, dim_out, kernel_size, **kwargs ): super().__init__() self.spatial_conv = nn.Conv2d(dim, dim_out, kernel_size, **kwargs) self.temporal_conv = nn.Conv1d(dim_out, dim_out, kernel_size, padding=kernel_size // 2) self.temporal_conv = nn.Conv1d(dim_out, dim_out, 3, padding=1) nn.init.dirac_(self.temporal_conv.weight.data) # initialized to be identity nn.init.zeros_(self.temporal_conv.bias.data) def forward( self, x, convolve_across_time = True ): b, c, *_, h, w = x.shape is_video = x.ndim == 5 convolve_across_time &= is_video if is_video: x = rearrange(x, 'b c f h w -> (b f) c h w') #with torch.no_grad(): # x = self.spatial_conv(x) x = self.spatial_conv(x) if is_video: x = rearrange(x, '(b f) c h w -> b c f h w', b = b) b, c, *_, h, w = x.shape if not convolve_across_time: return x if is_video: x = rearrange(x, 'b c f h w -> (b h w) c f') x = self.temporal_conv(x) x = rearrange(x, '(b h w) c f -> b c f h w', h = h, w = w) return x class Upsample2D(nn.Module): """ An upsampling layer with an optional convolution. Parameters: channels: channels in the inputs and outputs. use_conv: a bool determining if a convolution is applied. use_conv_transpose: out_channels: """ def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.use_conv_transpose = use_conv_transpose self.name = name conv = None if use_conv_transpose: conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1) elif use_conv: conv = Pseudo3DConv(self.channels, self.out_channels, 3, padding=1) # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed if name == "conv": self.conv = conv else: self.Conv2d_0 = conv def forward(self, hidden_states, output_size=None): assert hidden_states.shape[1] == self.channels if self.use_conv_transpose: return self.conv(hidden_states) # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 # TODO(Suraj): Remove this cast once the issue is fixed in PyTorch # https://github.com/pytorch/pytorch/issues/86679 dtype = hidden_states.dtype if dtype == torch.bfloat16: hidden_states = hidden_states.to(torch.float32) # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 if hidden_states.shape[0] >= 64: hidden_states = hidden_states.contiguous() b, c, *_, h, w = hidden_states.shape is_video = hidden_states.ndim == 5 if is_video: hidden_states = rearrange(hidden_states, 'b c f h w -> (b f) c h w') # if `output_size` is passed we force the interpolation output # size and do not make use of `scale_factor=2` if output_size is None: hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") else: hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest") if is_video: hidden_states = rearrange(hidden_states, '(b f) c h w -> b c f h w', b = b) # If the input is bfloat16, we cast back to bfloat16 if dtype == torch.bfloat16: hidden_states = hidden_states.to(dtype) # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed if self.use_conv: if self.name == "conv": hidden_states = self.conv(hidden_states) else: hidden_states = self.Conv2d_0(hidden_states) return hidden_states class Downsample2D(nn.Module): """ A downsampling layer with an optional convolution. Parameters: channels: channels in the inputs and outputs. use_conv: a bool determining if a convolution is applied. out_channels: padding: """ def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.padding = padding stride = 2 self.name = name if use_conv: conv = Pseudo3DConv(self.channels, self.out_channels, 3, stride=stride, padding=padding) else: assert self.channels == self.out_channels conv = nn.AvgPool2d(kernel_size=stride, stride=stride) # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed if name == "conv": self.Conv2d_0 = conv self.conv = conv elif name == "Conv2d_0": self.conv = conv else: self.conv = conv def forward(self, hidden_states): assert hidden_states.shape[1] == self.channels if self.use_conv and self.padding == 0: pad = (0, 1, 0, 1) hidden_states = F.pad(hidden_states, pad, mode="constant", value=0) assert hidden_states.shape[1] == self.channels if self.use_conv: hidden_states = self.conv(hidden_states) else: b, c, *_, h, w = hidden_states.shape is_video = hidden_states.ndim == 5 if is_video: hidden_states = rearrange(hidden_states, 'b c f h w -> (b f) c h w') hidden_states = self.conv(hidden_states) if is_video: hidden_states = rearrange(hidden_states, '(b f) c h w -> b c f h w', b = b) return hidden_states class ResnetBlockPseudo3D(nn.Module): def __init__( self, *, in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, temb_channels=512, groups=32, groups_out=None, pre_norm=True, eps=1e-6, time_embedding_norm="default", kernel=None, output_scale_factor=1.0, use_in_shortcut=None, up=False, down=False, ): super().__init__() self.pre_norm = pre_norm self.pre_norm = True self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.time_embedding_norm = time_embedding_norm self.up = up self.down = down self.output_scale_factor = output_scale_factor print('OUTPUT_SCALE_FACTOR:', output_scale_factor) if groups_out is None: groups_out = groups self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) self.conv1 = Pseudo3DConv(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if temb_channels is not None: self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels) else: self.time_emb_proj = None self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) self.dropout = torch.nn.Dropout(dropout) self.conv2 = Pseudo3DConv(out_channels, out_channels, kernel_size=3, stride=1, padding=1) self.nonlinearity = nn.SiLU() self.upsample = self.downsample = None if self.up: self.upsample = Upsample2D(in_channels, use_conv=False) elif self.down: self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op") self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut self.conv_shortcut = None if self.use_in_shortcut: self.conv_shortcut = Pseudo3DConv(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, input_tensor, temb): hidden_states = input_tensor hidden_states = self.norm1(hidden_states) hidden_states = self.nonlinearity(hidden_states) if self.upsample is not None: # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 if hidden_states.shape[0] >= 64: input_tensor = input_tensor.contiguous() hidden_states = hidden_states.contiguous() input_tensor = self.upsample(input_tensor) hidden_states = self.upsample(hidden_states) elif self.downsample is not None: input_tensor = self.downsample(input_tensor) hidden_states = self.downsample(hidden_states) hidden_states = self.conv1(hidden_states) if temb is not None: b, c, *_, h, w = hidden_states.shape is_video = hidden_states.ndim == 5 if is_video: b, c, f, h, w = hidden_states.shape hidden_states = rearrange(hidden_states, 'b c f h w -> (b f) c h w') temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None] hidden_states = hidden_states + temb.repeat_interleave(f, 0) hidden_states = rearrange(hidden_states, '(b f) c h w -> b c f h w', b=b) else: temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None] hidden_states = hidden_states + temb hidden_states = self.norm2(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) if self.conv_shortcut is not None: input_tensor = self.conv_shortcut(input_tensor) output_tensor = (input_tensor + hidden_states) / self.output_scale_factor return output_tensor