lopho's picture
forgot about the nested package structure
b2f876f
from typing import Any, Optional, Union, Tuple, Dict, List
import os
import random
import math
import time
import numpy as np
from tqdm.auto import tqdm, trange
import torch
from torch.utils.data import DataLoader
import jax
import jax.numpy as jnp
import optax
from flax import jax_utils, traverse_util
from flax.core.frozen_dict import FrozenDict
from flax.training.train_state import TrainState
from flax.training.common_utils import shard
# convert 2D -> 3D
from diffusers import FlaxUNet2DConditionModel
# inference test, run on these on cpu
from diffusers import AutoencoderKL
from diffusers.schedulers.scheduling_ddim_flax import FlaxDDIMScheduler, DDIMSchedulerState
from transformers import CLIPTextModel, CLIPTokenizer
from PIL import Image
from .flax_unet_pseudo3d_condition import UNetPseudo3DConditionModel
def seed_all(seed: int) -> jax.random.PRNGKeyArray:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
rng = jax.random.PRNGKey(seed)
return rng
def count_params(
params: Union[Dict[str, Any],
FrozenDict[str, Any]],
filter_name: Optional[str] = None
) -> int:
p: Dict[Tuple[str], jax.Array] = traverse_util.flatten_dict(params)
cc = 0
for k in p:
if filter_name is not None:
if filter_name in ' '.join(k):
cc += len(p[k].flatten())
else:
cc += len(p[k].flatten())
return cc
def map_2d_to_pseudo3d(
params2d: Dict[str, Any],
params3d: Dict[str, Any],
verbose: bool = True
) -> Dict[str, Any]:
params2d = traverse_util.flatten_dict(params2d)
params3d = traverse_util.flatten_dict(params3d)
new_params = dict()
for k in params3d:
if 'spatial_conv' in k:
k2d = list(k)
k2d.remove('spatial_conv')
k2d = tuple(k2d)
if verbose:
tqdm.write(f'Spatial: {k} <- {k2d}')
p = params2d[k2d]
elif k not in params2d:
if verbose:
tqdm.write(f'Missing: {k}')
p = params3d[k]
else:
p = params2d[k]
assert p.shape == params3d[k].shape, f'shape mismatch: {k}: {p.shape} != {params3d[k].shape}'
new_params[k] = p
new_params = traverse_util.unflatten_dict(new_params)
return new_params
class FlaxTrainerUNetPseudo3D:
def __init__(self,
model_path: str,
from_pt: bool = True,
convert2d: bool = False,
sample_size: Tuple[int, int] = (64, 64),
seed: int = 0,
dtype: str = 'float32',
param_dtype: str = 'float32',
only_temporal: bool = True,
use_memory_efficient_attention = False,
verbose: bool = True
) -> None:
self.verbose = verbose
self.tracker: Optional['wandb.sdk.wandb_run.Run'] = None
self._use_wandb: bool = False
self._tracker_meta: Dict[str, Union[float, int]] = {
't00': 0.0,
't0': 0.0,
'step0': 0
}
self.log('Init JAX')
self.num_devices = jax.device_count()
self.log(f'Device count: {self.num_devices}')
self.seed = seed
self.rng: jax.random.PRNGKeyArray = seed_all(self.seed)
self.sample_size = sample_size
if dtype == 'float32':
self.dtype = jnp.float32
elif dtype == 'bfloat16':
self.dtype = jnp.bfloat16
elif dtype == 'float16':
self.dtype = jnp.float16
else:
raise ValueError(f'unknown type: {dtype}')
self.dtype_str: str = dtype
if param_dtype not in ['float32', 'bfloat16', 'float16']:
raise ValueError(f'unknown parameter type: {param_dtype}')
self.param_dtype = param_dtype
self._load_models(
model_path = model_path,
convert2d = convert2d,
from_pt = from_pt,
use_memory_efficient_attention = use_memory_efficient_attention
)
self._mark_parameters(only_temporal = only_temporal)
# optionally for validation + sampling
self.tokenizer: Optional[CLIPTokenizer] = None
self.text_encoder: Optional[CLIPTextModel] = None
self.vae: Optional[AutoencoderKL] = None
self.ddim: Optional[Tuple[FlaxDDIMScheduler, DDIMSchedulerState]] = None
def log(self, message: Any) -> None:
if self.verbose and jax.process_index() == 0:
tqdm.write(str(message))
def log_metrics(self, metrics: dict, step: int, epoch: int) -> None:
if jax.process_index() > 0 or (not self.verbose and self.tracker is None):
return
now = time.monotonic()
log_data = {
'train/step': step,
'train/epoch': epoch,
'train/steps_per_sec': (step - self._tracker_meta['step0']) / (now - self._tracker_meta['t0']),
**{ f'train/{k}': v for k, v in metrics.items() }
}
self._tracker_meta['t0'] = now
self._tracker_meta['step0'] = step
self.log(log_data)
if self.tracker is not None:
self.tracker.log(log_data, step = step)
def enable_wandb(self, enable: bool = True) -> None:
self._use_wandb = enable
def _setup_wandb(self, config: Dict[str, Any] = dict()) -> None:
import wandb
import wandb.sdk
self.tracker: wandb.sdk.wandb_run.Run = wandb.init(
config = config,
settings = wandb.sdk.Settings(
username = 'anon',
host = 'anon',
email = 'anon',
root_dir = 'anon',
_executable = 'anon',
_disable_stats = True,
_disable_meta = True,
disable_code = True,
disable_git = True
) # pls don't log sensitive data like system user names. also, fuck you for even trying.
)
def _init_tracker_meta(self) -> None:
now = time.monotonic()
self._tracker_meta = {
't00': now,
't0': now,
'step0': 0
}
def _load_models(self,
model_path: str,
convert2d: bool,
from_pt: bool,
use_memory_efficient_attention: bool
) -> None:
self.log(f'Load pretrained from {model_path}')
if convert2d:
self.log(' Convert 2D model to Pseudo3D')
self.log(' Initiate Pseudo3D model')
config = UNetPseudo3DConditionModel.load_config(model_path, subfolder = 'unet')
model = UNetPseudo3DConditionModel.from_config(
config,
sample_size = self.sample_size,
dtype = self.dtype,
param_dtype = self.param_dtype,
use_memory_efficient_attention = use_memory_efficient_attention
)
params: Dict[str, Any] = model.init_weights(self.rng).unfreeze()
self.log(' Load 2D model')
model2d, params2d = FlaxUNet2DConditionModel.from_pretrained(
model_path,
subfolder = 'unet',
dtype = self.dtype,
from_pt = from_pt
)
self.log(' Map 2D -> 3D')
params = map_2d_to_pseudo3d(params2d, params, verbose = self.verbose)
del params2d
del model2d
del config
else:
model, params = UNetPseudo3DConditionModel.from_pretrained(
model_path,
subfolder = 'unet',
from_pt = from_pt,
sample_size = self.sample_size,
dtype = self.dtype,
param_dtype = self.param_dtype,
use_memory_efficient_attention = use_memory_efficient_attention
)
self.log(f'Cast parameters to {model.param_dtype}')
if model.param_dtype == 'float32':
params = model.to_fp32(params)
elif model.param_dtype == 'float16':
params = model.to_fp16(params)
elif model.param_dtype == 'bfloat16':
params = model.to_bf16(params)
self.pretrained_model = model_path
self.model: UNetPseudo3DConditionModel = model
self.params: FrozenDict[str, Any] = FrozenDict(params)
def _mark_parameters(self, only_temporal: bool) -> None:
self.log('Mark training parameters')
if only_temporal:
self.log('Only training temporal layers')
if only_temporal:
param_partitions = traverse_util.path_aware_map(
lambda path, _: 'trainable' if 'temporal' in ' '.join(path) else 'frozen', self.params
)
else:
param_partitions = traverse_util.path_aware_map(
lambda *_: 'trainable', self.params
)
self.only_temporal = only_temporal
self.param_partitions: FrozenDict[str, Any] = FrozenDict(param_partitions)
self.log(f'Total parameters: {count_params(self.params)}')
self.log(f'Temporal parameters: {count_params(self.params, "temporal")}')
def _load_inference_models(self) -> None:
assert jax.process_index() == 0, 'not main process'
if self.text_encoder is None:
self.log('Load text encoder')
self.text_encoder = CLIPTextModel.from_pretrained(
self.pretrained_model,
subfolder = 'text_encoder'
)
if self.tokenizer is None:
self.log('Load tokenizer')
self.tokenizer = CLIPTokenizer.from_pretrained(
self.pretrained_model,
subfolder = 'tokenizer'
)
if self.vae is None:
self.log('Load vae')
self.vae = AutoencoderKL.from_pretrained(
self.pretrained_model,
subfolder = 'vae'
)
if self.ddim is None:
self.log('Load ddim scheduler')
# tuple(scheduler , scheduler state)
self.ddim = FlaxDDIMScheduler.from_pretrained(
self.pretrained_model,
subfolder = 'scheduler',
from_pt = True
)
def _unload_inference_models(self) -> None:
self.text_encoder = None
self.tokenizer = None
self.vae = None
self.ddim = None
def sample(self,
params: Union[Dict[str, Any], FrozenDict[str, Any]],
prompt: str,
image_path: str,
num_frames: int,
replicate_params: bool = True,
neg_prompt: str = '',
steps: int = 50,
cfg: float = 9.0,
unload_after_usage: bool = False
) -> List[Image.Image]:
assert jax.process_index() == 0, 'not main process'
self.log('Sample')
self._load_inference_models()
with torch.no_grad():
tokens = self.tokenizer(
[ prompt ],
truncation = True,
return_overflowing_tokens = False,
padding = 'max_length',
return_tensors = 'pt'
).input_ids
neg_tokens = self.tokenizer(
[ neg_prompt ],
truncation = True,
return_overflowing_tokens = False,
padding = 'max_length',
return_tensors = 'pt'
).input_ids
encoded_prompt = self.text_encoder(input_ids = tokens).last_hidden_state
encoded_neg_prompt = self.text_encoder(input_ids = neg_tokens).last_hidden_state
hint_latent = torch.tensor(np.asarray(Image.open(image_path))).permute(2,0,1).to(torch.float32).div(255).mul(2).sub(1).unsqueeze(0)
hint_latent = self.vae.encode(hint_latent).latent_dist.mean * self.vae.config.scaling_factor #0.18215 # deterministic
hint_latent = hint_latent.unsqueeze(2).repeat_interleave(num_frames, 2)
mask = torch.zeros_like(hint_latent[:,0:1,:,:,:]) # zero mask, e.g. skip masking for now
init_latent = torch.randn_like(hint_latent)
# move to devices
encoded_prompt = jnp.array(encoded_prompt.numpy())
encoded_neg_prompt = jnp.array(encoded_neg_prompt.numpy())
hint_latent = jnp.array(hint_latent.numpy())
mask = jnp.array(mask.numpy())
init_latent = init_latent.repeat(jax.device_count(), 1, 1, 1, 1)
init_latent = jnp.array(init_latent.numpy())
self.ddim = (self.ddim[0], self.ddim[0].set_timesteps(self.ddim[1], steps))
timesteps = self.ddim[1].timesteps
if replicate_params:
params = jax_utils.replicate(params)
ddim_state = jax_utils.replicate(self.ddim[1])
encoded_prompt = jax_utils.replicate(encoded_prompt)
encoded_neg_prompt = jax_utils.replicate(encoded_neg_prompt)
hint_latent = jax_utils.replicate(hint_latent)
mask = jax_utils.replicate(mask)
# sampling fun
def sample_loop(init_latent, ddim_state, t, params, encoded_prompt, encoded_neg_prompt, hint_latent, mask):
latent_model_input = jnp.concatenate([init_latent, mask, hint_latent], axis = 1)
pred = self.model.apply(
{ 'params': params },
latent_model_input,
t,
encoded_prompt
).sample
if cfg != 1.0:
neg_pred = self.model.apply(
{ 'params': params },
latent_model_input,
t,
encoded_neg_prompt
).sample
pred = neg_pred + cfg * (pred - neg_pred)
# TODO check if noise is added at the right dimension
init_latent, ddim_state = self.ddim[0].step(ddim_state, pred, t, init_latent).to_tuple()
return init_latent, ddim_state
p_sample_loop = jax.pmap(sample_loop, 'sample', donate_argnums = ())
pbar_sample = trange(len(timesteps), desc = 'Sample', dynamic_ncols = True, smoothing = 0.1, disable = not self.verbose)
init_latent = shard(init_latent)
for i in pbar_sample:
t = timesteps[i].repeat(self.num_devices)
t = shard(t)
init_latent, ddim_state = p_sample_loop(init_latent, ddim_state, t, params, encoded_prompt, encoded_neg_prompt, hint_latent, mask)
# decode
self.log('Decode')
init_latent = torch.tensor(np.array(init_latent))
init_latent = init_latent / self.vae.config.scaling_factor
# d:0 b:1 c:2 f:3 h:4 w:5 -> d b f c h w
init_latent = init_latent.permute(0, 1, 3, 2, 4, 5)
images = []
pbar_decode = trange(len(init_latent), desc = 'Decode', dynamic_ncols = True)
for sample in init_latent:
ims = self.vae.decode(sample.squeeze()).sample
ims = ims.add(1).div(2).mul(255).round().clamp(0, 255).to(torch.uint8).permute(0,2,3,1).numpy()
ims = [ Image.fromarray(x) for x in ims ]
for im in ims:
images.append(im)
pbar_decode.update(1)
if unload_after_usage:
self._unload_inference_models()
return images
def get_params_from_state(self, state: TrainState) -> FrozenDict[Any, str]:
return FrozenDict(jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params)))
def train(self,
dataloader: DataLoader,
lr: float,
num_frames: int,
log_every_step: int = 10,
save_every_epoch: int = 1,
sample_every_epoch: int = 1,
output_dir: str = 'output',
warmup: float = 0,
decay: float = 0,
epochs: int = 10,
weight_decay: float = 1e-2
) -> None:
eps = 1e-8
total_steps = len(dataloader) * epochs
warmup_steps = math.ceil(warmup * total_steps) if warmup > 0 else 0
decay_steps = math.ceil(decay * total_steps) + warmup_steps if decay > 0 else warmup_steps + 1
self.log(f'Total steps: {total_steps}')
self.log(f'Warmup steps: {warmup_steps}')
self.log(f'Decay steps: {decay_steps - warmup_steps}')
if warmup > 0 or decay > 0:
if not decay > 0:
# only warmup, keep peak lr until end
self.log('Warmup schedule')
end_lr = lr
else:
# warmup + annealing to end lr
self.log('Warmup + cosine annealing schedule')
end_lr = eps
lr_schedule = optax.warmup_cosine_decay_schedule(
init_value = 0.0,
peak_value = lr,
warmup_steps = warmup_steps,
decay_steps = decay_steps,
end_value = end_lr
)
else:
# no warmup or decay -> constant lr
self.log('constant schedule')
lr_schedule = optax.constant_schedule(value = lr)
adamw = optax.adamw(
learning_rate = lr_schedule,
b1 = 0.9,
b2 = 0.999,
eps = eps,
weight_decay = weight_decay #0.01 # 0.0001
)
optim = optax.chain(
optax.clip_by_global_norm(max_norm = 1.0),
adamw
)
partition_optimizers = {
'trainable': optim,
'frozen': optax.set_to_zero()
}
tx = optax.multi_transform(partition_optimizers, self.param_partitions)
state = TrainState.create(
apply_fn = self.model.__call__,
params = self.params,
tx = tx
)
validation_rng, train_rngs = jax.random.split(self.rng)
train_rngs = jax.random.split(train_rngs, jax.local_device_count())
def train_step(state: TrainState, batch: Dict[str, jax.Array], train_rng: jax.random.PRNGKeyArray):
def compute_loss(
params: Dict[str, Any],
batch: Dict[str, jax.Array],
sample_rng: jax.random.PRNGKeyArray # unused, dataloader provides everything
) -> jax.Array:
# 'latent_model_input': latent_model_input
# 'encoder_hidden_states': encoder_hidden_states
# 'timesteps': timesteps
# 'noise': noise
latent_model_input = batch['latent_model_input']
encoder_hidden_states = batch['encoder_hidden_states']
timesteps = batch['timesteps']
noise = batch['noise']
model_pred = self.model.apply(
{ 'params': params },
latent_model_input,
timesteps,
encoder_hidden_states
).sample
loss = (noise - model_pred) ** 2
loss = loss.mean()
return loss
grad_fn = jax.value_and_grad(compute_loss)
def loss_and_grad(
train_rng: jax.random.PRNGKeyArray
) -> Tuple[jax.Array, Any, jax.random.PRNGKeyArray]:
sample_rng, train_rng = jax.random.split(train_rng, 2)
loss, grad = grad_fn(state.params, batch, sample_rng)
return loss, grad, train_rng
loss, grad, new_train_rng = loss_and_grad(train_rng)
# self.log(grad) # NOTE uncomment to visualize gradient
grad = jax.lax.pmean(grad, axis_name = 'batch')
new_state = state.apply_gradients(grads = grad)
metrics: Dict[str, Any] = { 'loss': loss }
metrics = jax.lax.pmean(metrics, axis_name = 'batch')
def l2(xs) -> jax.Array:
return jnp.sqrt(sum([jnp.vdot(x, x) for x in jax.tree_util.tree_leaves(xs)]))
metrics['l2_grads'] = l2(jax.tree_util.tree_leaves(grad))
return new_state, metrics, new_train_rng
p_train_step = jax.pmap(fun = train_step, axis_name = 'batch', donate_argnums = (0, ))
state = jax_utils.replicate(state)
train_metrics = []
train_metric = None
global_step: int = 0
if jax.process_index() == 0:
self._init_tracker_meta()
hyper_params = {
'lr': lr,
'lr_warmup': warmup,
'lr_decay': decay,
'weight_decay': weight_decay,
'total_steps': total_steps,
'batch_size': dataloader.batch_size // self.num_devices,
'num_frames': num_frames,
'sample_size': self.sample_size,
'num_devices': self.num_devices,
'seed': self.seed,
'use_memory_efficient_attention': self.model.use_memory_efficient_attention,
'only_temporal': self.only_temporal,
'dtype': self.dtype_str,
'param_dtype': self.param_dtype,
'pretrained_model': self.pretrained_model,
'model_config': self.model.config
}
if self._use_wandb:
self.log('Setting up wandb')
self._setup_wandb(hyper_params)
self.log(hyper_params)
output_path = os.path.join(output_dir, str(global_step), 'unet')
self.log(f'saving checkpoint to {output_path}')
self.model.save_pretrained(
save_directory = output_path,
params = self.get_params_from_state(state),#jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params)),
is_main_process = True
)
pbar_epoch = tqdm(
total = epochs,
desc = 'Epochs',
smoothing = 1,
position = 0,
dynamic_ncols = True,
leave = True,
disable = jax.process_index() > 0
)
steps_per_epoch = len(dataloader) # TODO dataloader
for epoch in range(epochs):
pbar_steps = tqdm(
total = steps_per_epoch,
desc = 'Steps',
position = 1,
smoothing = 0.1,
dynamic_ncols = True,
leave = True,
disable = jax.process_index() > 0
)
for batch in dataloader:
# keep input + gt as float32, results in fp32 loss and grad
# otherwise uncomment the following to cast to the model dtype
# batch = { k: (v.astype(self.dtype) if v.dtype == np.float32 else v) for k,v in batch.items() }
batch = shard(batch)
state, train_metric, train_rngs = p_train_step(
state, batch, train_rngs
)
train_metrics.append(train_metric)
if global_step % log_every_step == 0 and jax.process_index() == 0:
train_metrics = jax_utils.unreplicate(train_metrics)
train_metrics = jax.tree_util.tree_map(lambda *m: jnp.array(m).mean(), *train_metrics)
if global_step == 0:
self.log(f'grad dtype: {train_metrics["l2_grads"].dtype}')
self.log(f'loss dtype: {train_metrics["loss"].dtype}')
train_metrics_dict = { k: v.item() for k, v in train_metrics.items() }
train_metrics_dict['lr'] = lr_schedule(global_step).item()
self.log_metrics(train_metrics_dict, step = global_step, epoch = epoch)
train_metrics = []
pbar_steps.update(1)
global_step += 1
if epoch % save_every_epoch == 0 and jax.process_index() == 0:
output_path = os.path.join(output_dir, str(global_step), 'unet')
self.log(f'saving checkpoint to {output_path}')
self.model.save_pretrained(
save_directory = output_path,
params = self.get_params_from_state(state),#jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params)),
is_main_process = True
)
self.log(f'checkpoint saved ')
if epoch % sample_every_epoch == 0 and jax.process_index() == 0:
images = self.sample(
params = state.params,
replicate_params = False,
prompt = 'dancing person',
image_path = 'testimage.png',
num_frames = num_frames,
steps = 50,
cfg = 9.0,
unload_after_usage = False
)
os.makedirs(os.path.join('image_output', str(epoch)), exist_ok = True)
for i, im in enumerate(images):
im.save(os.path.join('image_output', str(epoch), str(i).zfill(5) + '.png'), optimize = True)
pbar_epoch.update(1)