lopho's picture
saner defaults, more input sanitization, shorter queue
07b5d00
raw
history blame
21.9 kB
from typing import Any, Union, Optional, Tuple, List, Dict
import os
import gc
from functools import partial
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict
from flax import jax_utils
from flax.training.common_utils import shard
from PIL import Image
import einops
from diffusers import FlaxAutoencoderKL, FlaxUNet2DConditionModel
from diffusers import (
FlaxDDIMScheduler,
FlaxPNDMScheduler,
FlaxLMSDiscreteScheduler,
FlaxDPMSolverMultistepScheduler,
)
from diffusers.schedulers.scheduling_ddim_flax import DDIMSchedulerState
from diffusers.schedulers.scheduling_pndm_flax import PNDMSchedulerState
from diffusers.schedulers.scheduling_lms_discrete_flax import LMSDiscreteSchedulerState
from diffusers.schedulers.scheduling_dpmsolver_multistep_flax import DPMSolverMultistepSchedulerState
from transformers import FlaxCLIPTextModel, CLIPTokenizer
from .flax_impl.flax_unet_pseudo3d_condition import UNetPseudo3DConditionModel
SchedulerType = Union[
FlaxDDIMScheduler,
FlaxPNDMScheduler,
FlaxLMSDiscreteScheduler,
FlaxDPMSolverMultistepScheduler,
]
SchedulerStateType = Union[
DDIMSchedulerState,
PNDMSchedulerState,
LMSDiscreteSchedulerState,
DPMSolverMultistepSchedulerState,
]
SCHEDULERS: Dict[str, SchedulerType] = {
'dpm': FlaxDPMSolverMultistepScheduler, # husbando
'ddim': FlaxDDIMScheduler,
#'PLMS': FlaxPNDMScheduler, # its not correctly implemented in diffusers, output is bad, but at least it "works"
#'LMS': FlaxLMSDiscreteScheduler, # borked
# image_latents, image_scheduler_state = scheduler.step(
# File "/mnt/work1/make_a_vid/makeavid-space/.venv/lib/python3.10/site-packages/diffusers/schedulers/scheduling_lms_discrete_flax.py", line 255, in step
# order = min(timestep + 1, order)
# jax._src.errors.ConcretizationTypeError: Abstract tracer value encountered where concrete value is expected: Traced<ShapedArray(bool[])>with<DynamicJaxprTrace(level=1/1)>
# The problem arose with the `bool` function.
# The error occurred while tracing the function scanned_fun at /mnt/work1/make_a_vid/makeavid-space/.venv/lib/python3.10/site-packages/jax/_src/lax/control_flow/loops.py:1668 for scan. This concrete value was not available in Python because it depends on the values of the arguments loop_carry[0] and loop_carry[1][1].timesteps
}
def dtypestr(x: jnp.dtype):
if x == jnp.float32: return 'float32'
elif x == jnp.float16: return 'float16'
elif x == jnp.bfloat16: return 'bfloat16'
else: raise
def castto(dtype, m, x):
if dtype == jnp.float32: return m.to_fp32(x)
elif dtype == jnp.float16: return m.to_fp16(x)
elif dtype == jnp.bfloat16: return m.to_bf16(x)
else: raise
class InferenceUNetPseudo3D:
def __init__(self,
model_path: str,
dtype: jnp.dtype = jnp.float16,
hf_auth_token: Union[str, None] = None
) -> None:
self.dtype = dtype
self.model_path = model_path
self.hf_auth_token = hf_auth_token
self.params: Dict[str, FrozenDict[str, Any]] = {}
try:
import traceback
print('initializing unet')
unet, unet_params = UNetPseudo3DConditionModel.from_pretrained(
self.model_path,
subfolder = 'unet',
from_pt = False,
sample_size = (64, 64),
dtype = self.dtype,
param_dtype = dtypestr(self.dtype),
use_memory_efficient_attention = True,
use_auth_token = self.hf_auth_token
)
self.unet: UNetPseudo3DConditionModel = unet
print('casting unet params')
unet_params = castto(self.dtype, self.unet, unet_params)
print('storing unet params')
self.params['unet'] = FrozenDict(unet_params)
print('deleting unet params')
del unet_params
except Exception as e:
print(e)
self.failed = ''.join(traceback.format_exception(None, e, e.__traceback__))
traceback.print_exc()
return
self.failed = False
vae, vae_params = FlaxAutoencoderKL.from_pretrained(
self.model_path,
subfolder = 'vae',
from_pt = True,
dtype = self.dtype,
use_auth_token = self.hf_auth_token
)
self.vae: FlaxAutoencoderKL = vae
vae_params = castto(self.dtype, self.vae, vae_params)
self.params['vae'] = FrozenDict(vae_params)
del vae_params
text_encoder = FlaxCLIPTextModel.from_pretrained(
self.model_path,
subfolder = 'text_encoder',
from_pt = True,
dtype = self.dtype,
use_auth_token = self.hf_auth_token
)
text_encoder_params = text_encoder.params
del text_encoder._params
text_encoder_params = castto(self.dtype, text_encoder, text_encoder_params)
self.text_encoder: FlaxCLIPTextModel = text_encoder
self.params['text_encoder'] = FrozenDict(text_encoder_params)
del text_encoder_params
imunet, imunet_params = FlaxUNet2DConditionModel.from_pretrained(
'runwayml/stable-diffusion-v1-5',
subfolder = 'unet',
from_pt = True,
dtype = self.dtype,
use_memory_efficient_attention = True,
use_auth_token = self.hf_auth_token
)
imunet_params = castto(self.dtype, imunet, imunet_params)
self.imunet: FlaxUNet2DConditionModel = imunet
self.params['imunet'] = FrozenDict(imunet_params)
del imunet_params
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(
self.model_path,
subfolder = 'tokenizer',
use_auth_token = self.hf_auth_token
)
self.schedulers: Dict[str, Dict[str, SchedulerType]] = {}
for scheduler_name in SCHEDULERS:
if scheduler_name not in ['KarrasVe', 'SDEVe']:
scheduler, scheduler_state = SCHEDULERS[scheduler_name].from_pretrained(
self.model_path,
subfolder = 'scheduler',
dtype = jnp.float32,
use_auth_token = self.hf_auth_token
)
else:
scheduler, scheduler_state = SCHEDULERS[scheduler_name].from_pretrained(
self.model_path,
subfolder = 'scheduler',
use_auth_token = self.hf_auth_token
)
self.schedulers[scheduler_name] = scheduler
self.params[scheduler_name] = scheduler_state
self.vae_scale_factor: int = int(2 ** (len(self.vae.config.block_out_channels) - 1))
self.device_count = jax.device_count()
gc.collect()
def prepare_inputs(self,
prompt: List[str],
neg_prompt: List[str],
hint_image: List[Image.Image],
mask_image: List[Image.Image],
width: int,
height: int
) -> Tuple[jnp.ndarray, jnp.ndarray, jnp.ndarray, jnp.ndarray]: # prompt, neg_prompt, hint_image, mask_image
tokens = self.tokenizer(
prompt,
truncation = True,
return_overflowing_tokens = False,
max_length = 77, #self.text_encoder.config.max_length defaults to 20 if its not in the config smh
padding = 'max_length',
return_tensors = 'np'
).input_ids
tokens = jnp.array(tokens, dtype = jnp.int32)
neg_tokens = self.tokenizer(
neg_prompt,
truncation = True,
return_overflowing_tokens = False,
max_length = 77,
padding = 'max_length',
return_tensors = 'np'
).input_ids
neg_tokens = jnp.array(neg_tokens, dtype = jnp.int32)
for i,im in enumerate(hint_image):
if im.size != (width, height):
hint_image[i] = hint_image[i].resize((width, height), resample = Image.Resampling.LANCZOS)
for i,im in enumerate(mask_image):
if im.size != (width, height):
mask_image[i] = mask_image[i].resize((width, height), resample = Image.Resampling.LANCZOS)
# b,h,w,c | c == 3
hint = jnp.concatenate(
[ jnp.expand_dims(np.asarray(x.convert('RGB')), axis = 0) for x in hint_image ],
axis = 0
).astype(jnp.float32)
# scale -1,1
hint = (hint / 255) * 2 - 1
# b,h,w,c | c == 1
mask = jnp.concatenate(
[ jnp.expand_dims(np.asarray(x.convert('L')), axis = (0, -1)) for x in mask_image ],
axis = 0
).astype(jnp.float32)
# scale -1,1
mask = (mask / 255) * 2 - 1
# binarize mask
mask = mask.at[mask < 0.5].set(0)
mask = mask.at[mask >= 0.5].set(1)
# mask
hint = hint * (mask < 0.5)
# b,h,w,c -> b,c,h,w
hint = hint.transpose((0,3,1,2))
mask = mask.transpose((0,3,1,2))
return tokens, neg_tokens, hint, mask
def generate(self,
prompt: Union[str, List[str]] = '',
inference_steps: int = 20,
hint_image: Union[Image.Image, List[Image.Image], None] = None,
mask_image: Union[Image.Image, List[Image.Image], None] = None,
neg_prompt: Union[str, List[str]] = '',
cfg: float = 15.0,
cfg_image: Optional[float] = None,
num_frames: int = 24,
width: int = 512,
height: int = 512,
seed: int = 0,
scheduler_type: str = 'dpm'
) -> List[List[Image.Image]]:
assert inference_steps > 0, f'number of inference steps must be > 0 but is {inference_steps}'
assert num_frames > 0, f'number of frames must be > 0 but is {num_frames}'
assert width % 32 == 0, f'width must be divisible by 32 but is {width}'
assert height % 32 == 0, f'height must be divisible by 32 but is {height}'
if isinstance(prompt, str):
prompt = [ prompt ]
batch_size = len(prompt)
assert batch_size % self.device_count == 0, f'batch size must be multiple of {self.device_count}'
if hint_image is None:
hint_image = Image.new('RGB', (width, height), color = (0,0,0))
use_imagegen = True
else:
use_imagegen = False
if isinstance(hint_image, Image.Image):
hint_image = [ hint_image ] * batch_size
assert len(hint_image) == batch_size, f'number of hint images must be equal to batch size {batch_size} but is {len(hint_image)}'
if mask_image is None:
mask_image = Image.new('L', hint_image[0].size, color = 0)
if isinstance(mask_image, Image.Image):
mask_image = [ mask_image ] * batch_size
assert len(mask_image) == batch_size, f'number of mask images must be equal to batch size {batch_size} but is {len(mask_image)}'
if isinstance(neg_prompt, str):
neg_prompt = [ neg_prompt ] * batch_size
assert len(neg_prompt) == batch_size, f'number of negative prompts must be equal to batch size {batch_size} but is {len(neg_prompt)}'
assert scheduler_type in SCHEDULERS, f'unknown type of noise scheduler: {scheduler_type}, must be one of {list(SCHEDULERS.keys())}'
tokens, neg_tokens, hint, mask = self.prepare_inputs(
prompt = prompt,
neg_prompt = neg_prompt,
hint_image = hint_image,
mask_image = mask_image,
width = width,
height = height
)
if cfg_image is None:
cfg_image = cfg
#params['scheduler'] = scheduler_state
# NOTE splitting rngs is not deterministic,
# running on different device counts gives different seeds
#rng = jax.random.PRNGKey(seed)
#rngs = jax.random.split(rng, self.device_count)
# manually assign seeded RNGs to devices for reproducability
rngs = jnp.array([ jax.random.PRNGKey(seed + i) for i in range(self.device_count) ])
params = jax_utils.replicate(self.params)
tokens = shard(tokens)
neg_tokens = shard(neg_tokens)
hint = shard(hint)
mask = shard(mask)
images = _p_generate(self,
tokens,
neg_tokens,
hint,
mask,
inference_steps,
num_frames,
height,
width,
cfg,
cfg_image,
rngs,
params,
use_imagegen,
scheduler_type,
)
if images.ndim == 5:
images = einops.rearrange(images, 'd f c h w -> (d f) h w c')
else:
images = einops.rearrange(images, 'f c h w -> f h w c')
# to cpu
images = np.array(images)
images = [ Image.fromarray(x) for x in images ]
return images
def _generate(self,
tokens: jnp.ndarray,
neg_tokens: jnp.ndarray,
hint: jnp.ndarray,
mask: jnp.ndarray,
inference_steps: int,
num_frames,
height,
width,
cfg: float,
cfg_image: float,
rng: jax.random.KeyArray,
params: Union[Dict[str, Any], FrozenDict[str, Any]],
use_imagegen: bool,
scheduler_type: str
) -> List[Image.Image]:
batch_size = tokens.shape[0]
latent_h = height // self.vae_scale_factor
latent_w = width // self.vae_scale_factor
latent_shape = (
batch_size,
self.vae.config.latent_channels,
num_frames,
latent_h,
latent_w
)
encoded_prompt = self.text_encoder(tokens, params = params['text_encoder'])[0]
encoded_neg_prompt = self.text_encoder(neg_tokens, params = params['text_encoder'])[0]
scheduler = self.schedulers[scheduler_type]
scheduler_state = params[scheduler_type]
if use_imagegen:
image_latent_shape = (batch_size, self.vae.config.latent_channels, latent_h, latent_w)
image_latents = jax.random.normal(
rng,
shape = image_latent_shape,
dtype = jnp.float32
) * scheduler_state.init_noise_sigma
image_scheduler_state = scheduler.set_timesteps(
scheduler_state,
num_inference_steps = inference_steps,
shape = image_latents.shape
)
def image_sample_loop(step, args):
image_latents, image_scheduler_state = args
t = image_scheduler_state.timesteps[step]
tt = jnp.broadcast_to(t, image_latents.shape[0])
latents_input = scheduler.scale_model_input(image_scheduler_state, image_latents, t)
noise_pred = self.imunet.apply(
{ 'params': params['imunet']} ,
latents_input,
tt,
encoder_hidden_states = encoded_prompt
).sample
noise_pred_uncond = self.imunet.apply(
{ 'params': params['imunet'] },
latents_input,
tt,
encoder_hidden_states = encoded_neg_prompt
).sample
noise_pred = noise_pred_uncond + cfg * (noise_pred - noise_pred_uncond)
image_latents, image_scheduler_state = scheduler.step(
image_scheduler_state,
noise_pred.astype(jnp.float32),
t,
image_latents
).to_tuple()
return image_latents, image_scheduler_state
image_latents, _ = jax.lax.fori_loop(
0, inference_steps,
image_sample_loop,
(image_latents, image_scheduler_state)
)
hint = image_latents
else:
hint = self.vae.apply(
{ 'params': params['vae'] },
hint,
method = self.vae.encode
).latent_dist.mean * self.vae.config.scaling_factor
# NOTE vae keeps channels last for encode, but rearranges to channels first for decode
# b0 h1 w2 c3 -> b0 c3 h1 w2
hint = hint.transpose((0, 3, 1, 2))
hint = jnp.expand_dims(hint, axis = 2).repeat(num_frames, axis = 2)
mask = jax.image.resize(mask, (*mask.shape[:-2], *hint.shape[-2:]), method = 'nearest')
mask = jnp.expand_dims(mask, axis = 2).repeat(num_frames, axis = 2)
# NOTE jax normal distribution is shit with float16 + bfloat16
# SEE https://github.com/google/jax/discussions/13798
# generate random at float32
latents = jax.random.normal(
rng,
shape = latent_shape,
dtype = jnp.float32
) * scheduler_state.init_noise_sigma
scheduler_state = scheduler.set_timesteps(
scheduler_state,
num_inference_steps = inference_steps,
shape = latents.shape
)
def sample_loop(step, args):
latents, scheduler_state = args
t = scheduler_state.timesteps[step]#jnp.array(scheduler_state.timesteps, dtype = jnp.int32)[step]
tt = jnp.broadcast_to(t, latents.shape[0])
latents_input = scheduler.scale_model_input(scheduler_state, latents, t)
latents_input = jnp.concatenate([latents_input, mask, hint], axis = 1)
noise_pred = self.unet.apply(
{ 'params': params['unet'] },
latents_input,
tt,
encoded_prompt
).sample
noise_pred_uncond = self.unet.apply(
{ 'params': params['unet'] },
latents_input,
tt,
encoded_neg_prompt
).sample
noise_pred = noise_pred_uncond + cfg * (noise_pred - noise_pred_uncond)
latents, scheduler_state = scheduler.step(
scheduler_state,
noise_pred.astype(jnp.float32),
t,
latents
).to_tuple()
return latents, scheduler_state
latents, _ = jax.lax.fori_loop(
0, inference_steps,
sample_loop,
(latents, scheduler_state)
)
latents = 1 / self.vae.config.scaling_factor * latents
latents = einops.rearrange(latents, 'b c f h w -> (b f) c h w')
num_images = len(latents)
images_out = jnp.zeros(
(
num_images,
self.vae.config.out_channels,
height,
width
),
dtype = self.dtype
)
def decode_loop(step, images_out):
# NOTE vae keeps channels last for encode, but rearranges to channels first for decode
im = self.vae.apply(
{ 'params': params['vae'] },
jnp.expand_dims(latents[step], axis = 0),
method = self.vae.decode
).sample
images_out = images_out.at[step].set(im[0])
return images_out
images_out = jax.lax.fori_loop(0, num_images, decode_loop, images_out)
images_out = ((images_out / 2 + 0.5) * 255).round().clip(0, 255).astype(jnp.uint8)
return images_out
@partial(
jax.pmap,
in_axes = ( # 0 -> split across batch dim, None -> duplicate
None, # 0 inference_class
0, # 1 tokens
0, # 2 neg_tokens
0, # 3 hint
0, # 4 mask
None, # 5 inference_steps
None, # 6 num_frames
None, # 7 height
None, # 8 width
None, # 9 cfg
None, # 10 cfg_image
0, # 11 rng
0, # 12 params
None, # 13 use_imagegen
None, # 14 scheduler_type
),
static_broadcasted_argnums = ( # trigger recompilation on change
0, # inference_class
5, # inference_steps
6, # num_frames
7, # height
8, # width
13, # use_imagegen
14, # scheduler_type
)
)
def _p_generate(
inference_class: InferenceUNetPseudo3D,
tokens,
neg_tokens,
hint,
mask,
inference_steps: int,
num_frames: int,
height: int,
width: int,
cfg: float,
cfg_image: float,
rng,
params,
use_imagegen: bool,
scheduler_type: str
):
return inference_class._generate(
tokens,
neg_tokens,
hint,
mask,
inference_steps,
num_frames,
height,
width,
cfg,
cfg_image,
rng,
params,
use_imagegen,
scheduler_type
)