File size: 10,488 Bytes
149cc2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange

class Pseudo3DConv(nn.Module):
    def __init__(
        self,
        dim,
        dim_out,
        kernel_size,
        **kwargs
    ):
        super().__init__()

        self.spatial_conv = nn.Conv2d(dim, dim_out, kernel_size, **kwargs)
        self.temporal_conv = nn.Conv1d(dim_out, dim_out, kernel_size, padding=kernel_size // 2)
        self.temporal_conv = nn.Conv1d(dim_out, dim_out, 3, padding=1)

        nn.init.dirac_(self.temporal_conv.weight.data) # initialized to be identity
        nn.init.zeros_(self.temporal_conv.bias.data)

    def forward(
        self,
        x,
        convolve_across_time = True
    ):
        b, c, *_, h, w = x.shape

        is_video = x.ndim == 5
        convolve_across_time &= is_video

        if is_video:
            x = rearrange(x, 'b c f h w -> (b f) c h w')

        #with torch.no_grad():
        #    x = self.spatial_conv(x)
        x = self.spatial_conv(x)

        if is_video:
            x = rearrange(x, '(b f) c h w -> b c f h w', b = b)
            b, c, *_, h, w = x.shape
        
        if not convolve_across_time:
            return x

        if is_video:
            x = rearrange(x, 'b c f h w -> (b h w) c f')
            x = self.temporal_conv(x)
            x = rearrange(x, '(b h w) c f -> b c f h w', h = h, w = w)
        return x

class Upsample2D(nn.Module):
    """
    An upsampling layer with an optional convolution.

    Parameters:
        channels: channels in the inputs and outputs.
        use_conv: a bool determining if a convolution is applied.
        use_conv_transpose:
        out_channels:
    """

    def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_conv_transpose = use_conv_transpose
        self.name = name

        conv = None
        if use_conv_transpose:
            conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1)
        elif use_conv:
            conv = Pseudo3DConv(self.channels, self.out_channels, 3, padding=1)

        # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
        if name == "conv":
            self.conv = conv
        else:
            self.Conv2d_0 = conv

    def forward(self, hidden_states, output_size=None):
        assert hidden_states.shape[1] == self.channels

        if self.use_conv_transpose:
            return self.conv(hidden_states)

        # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
        # TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
        # https://github.com/pytorch/pytorch/issues/86679
        dtype = hidden_states.dtype
        if dtype == torch.bfloat16:
            hidden_states = hidden_states.to(torch.float32)

        # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
        if hidden_states.shape[0] >= 64:
            hidden_states = hidden_states.contiguous()

        b, c, *_, h, w = hidden_states.shape

        is_video = hidden_states.ndim == 5

        if is_video:
            hidden_states = rearrange(hidden_states, 'b c f h w -> (b f) c h w')

        # if `output_size` is passed we force the interpolation output
        # size and do not make use of `scale_factor=2`
        if output_size is None:
            hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
        else:
            hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")

        if is_video:
            hidden_states = rearrange(hidden_states, '(b f) c h w -> b c f h w', b = b)

        # If the input is bfloat16, we cast back to bfloat16
        if dtype == torch.bfloat16:
            hidden_states = hidden_states.to(dtype)

        # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
        if self.use_conv:
            if self.name == "conv":
                hidden_states = self.conv(hidden_states)
            else:
                hidden_states = self.Conv2d_0(hidden_states)

        return hidden_states


class Downsample2D(nn.Module):
    """
    A downsampling layer with an optional convolution.

    Parameters:
        channels: channels in the inputs and outputs.
        use_conv: a bool determining if a convolution is applied.
        out_channels:
        padding:
    """

    def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.padding = padding
        stride = 2
        self.name = name

        if use_conv:
            conv = Pseudo3DConv(self.channels, self.out_channels, 3, stride=stride, padding=padding)
        else:
            assert self.channels == self.out_channels
            conv = nn.AvgPool2d(kernel_size=stride, stride=stride)

        # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
        if name == "conv":
            self.Conv2d_0 = conv
            self.conv = conv
        elif name == "Conv2d_0":
            self.conv = conv
        else:
            self.conv = conv

    def forward(self, hidden_states):
        assert hidden_states.shape[1] == self.channels
        if self.use_conv and self.padding == 0:
            pad = (0, 1, 0, 1)
            hidden_states = F.pad(hidden_states, pad, mode="constant", value=0)

        assert hidden_states.shape[1] == self.channels
        if self.use_conv:
            hidden_states = self.conv(hidden_states)
        else:
            b, c, *_, h, w = hidden_states.shape
            is_video = hidden_states.ndim == 5
            if is_video:
                hidden_states = rearrange(hidden_states, 'b c f h w -> (b f) c h w')
            hidden_states = self.conv(hidden_states)
            if is_video:
                hidden_states = rearrange(hidden_states, '(b f) c h w -> b c f h w', b = b)

        return hidden_states


class ResnetBlockPseudo3D(nn.Module):
    def __init__(
        self,
        *,
        in_channels,
        out_channels=None,
        conv_shortcut=False,
        dropout=0.0,
        temb_channels=512,
        groups=32,
        groups_out=None,
        pre_norm=True,
        eps=1e-6,
        time_embedding_norm="default",
        kernel=None,
        output_scale_factor=1.0,
        use_in_shortcut=None,
        up=False,
        down=False,
    ):
        super().__init__()
        self.pre_norm = pre_norm
        self.pre_norm = True
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut
        self.time_embedding_norm = time_embedding_norm
        self.up = up
        self.down = down
        self.output_scale_factor = output_scale_factor
        print('OUTPUT_SCALE_FACTOR:', output_scale_factor)

        if groups_out is None:
            groups_out = groups

        self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)

        self.conv1 = Pseudo3DConv(in_channels, out_channels, kernel_size=3, stride=1, padding=1)

        if temb_channels is not None:
            self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels)
        else:
            self.time_emb_proj = None

        self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = Pseudo3DConv(out_channels, out_channels, kernel_size=3, stride=1, padding=1)

        self.nonlinearity = nn.SiLU()

        self.upsample = self.downsample = None
        if self.up:
            self.upsample = Upsample2D(in_channels, use_conv=False)
        elif self.down:
            self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op")

        self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut

        self.conv_shortcut = None
        if self.use_in_shortcut:
            self.conv_shortcut = Pseudo3DConv(in_channels, out_channels, kernel_size=1, stride=1, padding=0)

    def forward(self, input_tensor, temb):
        hidden_states = input_tensor

        hidden_states = self.norm1(hidden_states)
        hidden_states = self.nonlinearity(hidden_states)

        if self.upsample is not None:
            # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
            if hidden_states.shape[0] >= 64:
                input_tensor = input_tensor.contiguous()
                hidden_states = hidden_states.contiguous()
            input_tensor = self.upsample(input_tensor)
            hidden_states = self.upsample(hidden_states)
        elif self.downsample is not None:
            input_tensor = self.downsample(input_tensor)
            hidden_states = self.downsample(hidden_states)

        hidden_states = self.conv1(hidden_states)

        if temb is not None:
            b, c, *_, h, w = hidden_states.shape
            is_video = hidden_states.ndim == 5
            if is_video:
                b, c, f, h, w = hidden_states.shape
                hidden_states = rearrange(hidden_states, 'b c f h w -> (b f) c h w')
                temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
                hidden_states = hidden_states + temb.repeat_interleave(f, 0)
                hidden_states = rearrange(hidden_states, '(b f) c h w -> b c f h w', b=b)
            else:
                temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
                hidden_states = hidden_states + temb

        hidden_states = self.norm2(hidden_states)
        hidden_states = self.nonlinearity(hidden_states)

        hidden_states = self.dropout(hidden_states)
        hidden_states = self.conv2(hidden_states)

        if self.conv_shortcut is not None:
            input_tensor = self.conv_shortcut(input_tensor)

        output_tensor = (input_tensor + hidden_states) / self.output_scale_factor

        return output_tensor