File size: 11,011 Bytes
149cc2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
from typing import Optional

import torch
import torch.nn.functional as F
from torch import nn

from einops import rearrange

from diffusers.models.attention_processor import Attention as CrossAttention
#from torch_cross_attention import CrossAttention


class TransformerPseudo3DModelOutput:
    def __init__(self, sample: torch.FloatTensor) -> None:
        self.sample = sample


class TransformerPseudo3DModel(nn.Module):
    def __init__(self,
            num_attention_heads: int = 16,
            attention_head_dim: int = 88,
            in_channels: Optional[int] = None,
            num_layers: int = 1,
            dropout: float = 0.0,
            norm_num_groups: int = 32,
            cross_attention_dim: Optional[int] = None,
            attention_bias: bool = False
    ) -> None:
        super().__init__()
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim

        # 1. Transformer2DModel can process both standard continous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
        # Define whether input is continuous or discrete depending on configuration
        # its continuous

        # 2. Define input layers
        self.in_channels = in_channels

        self.norm = torch.nn.GroupNorm(
                num_groups = norm_num_groups,
                num_channels = in_channels,
                eps = 1e-6,
                affine = True
        )
        self.proj_in = nn.Conv2d(
                in_channels,
                inner_dim,
                kernel_size = 1,
                stride = 1,
                padding = 0
        )

        # 3. Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                        inner_dim,
                        num_attention_heads,
                        attention_head_dim,
                        dropout = dropout,
                        cross_attention_dim = cross_attention_dim,
                        attention_bias = attention_bias,
                )
                for _ in range(num_layers)
            ]
        )

        # 4. Define output layers
        self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size = 1, stride = 1, padding = 0)

    def forward(self,
            hidden_states: torch.Tensor,
            encoder_hidden_states: Optional[torch.Tensor] = None,
            timestep: torch.long = None
    ) -> TransformerPseudo3DModelOutput:
        """
        Args:
            hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
                When continous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
                hidden_states
            encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, context dim)`, *optional*):
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            timestep ( `torch.long`, *optional*):
                Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.

        Returns:
            [`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
            if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
            tensor.
        """
        b, c, *_, h, w = hidden_states.shape
        is_video = hidden_states.ndim == 5
        f = None
        if is_video:
            b, c, f, h, w = hidden_states.shape
            hidden_states = rearrange(hidden_states, 'b c f h w -> (b f) c h w')
            #encoder_hidden_states = encoder_hidden_states.repeat_interleave(f, 0)

        # 1. Input
        batch, channel, height, weight = hidden_states.shape
        residual = hidden_states
        hidden_states = self.norm(hidden_states)
        hidden_states = self.proj_in(hidden_states)
        inner_dim = hidden_states.shape[1]
        hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)

        # 2. Blocks
        for block in self.transformer_blocks:
            hidden_states = block(
                    hidden_states,
                    context = encoder_hidden_states,
                    timestep = timestep,
                    frames_length = f,
                    height = height,
                    weight = weight
            )

        # 3. Output
        hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2)
        hidden_states = self.proj_out(hidden_states)
        output = hidden_states + residual

        if is_video:
            output = rearrange(output, '(b f) c h w -> b c f h w', b = b)

        return TransformerPseudo3DModelOutput(sample = output)



class BasicTransformerBlock(nn.Module):
    r"""
    A basic Transformer block.

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The size of the context vector for cross attention.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
    """

    def __init__(self,
            dim: int,
            num_attention_heads: int,
            attention_head_dim: int,
            dropout: float = 0.0,
            cross_attention_dim: Optional[int] = None,
            attention_bias: bool = False,
    ) -> None:
        super().__init__()
        self.attn1 = CrossAttention(
                query_dim = dim,
                heads = num_attention_heads,
                dim_head = attention_head_dim,
                dropout = dropout,
                bias = attention_bias
        )  # is a self-attention
        self.ff = FeedForward(dim, dropout = dropout)
        self.attn2 = CrossAttention(
                query_dim = dim,
                cross_attention_dim = cross_attention_dim,
                heads = num_attention_heads,
                dim_head = attention_head_dim,
                dropout = dropout,
                bias = attention_bias
        )  # is self-attn if context is none
        self.attn_temporal = CrossAttention(
                query_dim = dim,
                heads = num_attention_heads,
                dim_head = attention_head_dim,
                dropout = dropout,
                bias = attention_bias
        )  # is a self-attention

        # layer norms
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.norm_temporal = nn.LayerNorm(dim)
        self.norm3 = nn.LayerNorm(dim)

    def forward(self,
            hidden_states: torch.Tensor,
            context: Optional[torch.Tensor] = None,
            timestep: torch.int64 = None,
            frames_length: Optional[int] = None,
            height: Optional[int] = None,
            weight: Optional[int] = None
    ) -> torch.Tensor:
        if context is not None and frames_length is not None:
            context = context.repeat_interleave(frames_length, 0)
        # 1. Self-Attention
        norm_hidden_states = (
            self.norm1(hidden_states)
        )
        hidden_states = self.attn1(norm_hidden_states) + hidden_states

        # 2. Cross-Attention
        norm_hidden_states = (
            self.norm2(hidden_states)
        )
        hidden_states = self.attn2(
                norm_hidden_states,
                encoder_hidden_states = context
        ) + hidden_states

        # append temporal attention
        if frames_length is not None:
            hidden_states = rearrange(
                    hidden_states,
                    '(b f) (h w) c -> (b h w) f c',
                    f = frames_length,
                    h = height,
                    w = weight
            )
            norm_hidden_states = (
                self.norm_temporal(hidden_states)
            )
            hidden_states = self.attn_temporal(norm_hidden_states) + hidden_states
            hidden_states = rearrange(
                    hidden_states,
                    '(b h w) f c -> (b f) (h w) c',
                    f = frames_length,
                    h = height,
                    w = weight
            )

        # 3. Feed-forward
        hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
        return hidden_states


class FeedForward(nn.Module):
    r"""
    A feed-forward layer.

    Parameters:
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
    """

    def __init__(self,
            dim: int,
            dim_out: Optional[int] = None,
            mult: int = 4,
            dropout: float = 0.0
    ) -> None:
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = dim_out if dim_out is not None else dim

        geglu = GEGLU(dim, inner_dim)

        self.net = nn.ModuleList([])
        # project in
        self.net.append(geglu)
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
        self.net.append(nn.Linear(inner_dim, dim_out))

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        for module in self.net:
            hidden_states = module(hidden_states)
        return hidden_states


# feedforward
class GEGLU(nn.Module):
    r"""
    A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.

    Parameters:
        dim_in (`int`): The number of channels in the input.
        dim_out (`int`): The number of channels in the output.
    """

    def __init__(self, dim_in: int, dim_out: int) -> None:
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states, gate = self.proj(hidden_states).chunk(2, dim = -1)
        return hidden_states * F.gelu(gate)