File size: 10,521 Bytes
8c4daf1
 
 
 
 
 
 
 
 
 
 
3b76971
 
8c4daf1
 
 
 
 
 
 
 
 
 
 
 
c8d7214
 
 
 
 
 
810b825
8c4daf1
 
 
 
ade8672
8c4daf1
 
 
 
 
 
 
 
 
 
 
 
556b961
 
8c4daf1
 
 
ade8672
8c4daf1
 
 
 
 
 
 
 
 
ade8672
8c4daf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b09d17
 
a1b3de8
8c4daf1
 
 
 
 
 
 
 
 
 
5b09d17
8c4daf1
 
 
 
 
 
 
 
5b09d17
8c4daf1
 
 
 
 
 
 
 
 
 
 
 
181019b
c7bf29f
181019b
c7bf29f
181019b
0bb5471
 
181019b
 
 
 
 
 
 
 
 
 
 
8c4daf1
 
 
 
 
181019b
 
8c4daf1
 
 
 
 
 
 
 
 
c7bf29f
8c4daf1
 
 
 
 
 
 
 
 
 
 
 
 
181019b
8c4daf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
937a219
8c4daf1
 
 
 
 
 
 
 
 
 
 
 
556b961
8c4daf1
 
 
 
 
 
556b961
8c4daf1
 
 
 
 
 
 
 
 
 
3b76971
5b09d17
 
8c4daf1
 
 
 
 
5b09d17
 
 
 
 
 
 
 
8c4daf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7bf29f
8c4daf1
181019b
8c4daf1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

import os
from io import BytesIO
import base64
from functools import partial

from PIL import Image, ImageOps
import gradio as gr

from makeavid_sd.inference import InferenceUNetPseudo3D, FlaxDPMSolverMultistepScheduler, jnp

print(os.environ.get('XLA_PYTHON_CLIENT_PREALLOCATE', 'NotSet'))
print(os.environ.get('XLA_PYTHON_CLIENT_ALLOCATOR', 'NotSet'))

_preheat: bool = False

_seen_compilations = set()

_model = InferenceUNetPseudo3D(
        model_path = 'TempoFunk/makeavid-sd-jax',
        scheduler_cls = FlaxDPMSolverMultistepScheduler,
        dtype = jnp.float16,
        hf_auth_token = os.environ.get('HUGGING_FACE_HUB_TOKEN', None)
)

if _model.failed != False:
    trace = f'```{_model.failed}```'
    with gr.Blocks(title = 'Make-A-Video Stable Diffusion JAX', analytics_enabled = False) as demo:
        exception = gr.Markdown(trace)

    demo.launch()

# gradio is illiterate. type hints make it go poopoo in pantsu.
def generate(
        prompt = 'An elderly man having a great time in the park.',
        neg_prompt = '',
        image = None,
        inference_steps = 20,
        cfg = 12.0,
        seed = 0,
        fps = 24,
        num_frames = 24,
        height = 512,
        width = 512
) -> str:
    height = int(height)
    width = int(width)
    num_frames = int(num_frames)
    seed = int(seed)
    height = (height // 64) * 64
    width = (width // 64) * 64
    if seed < 0:
        seed = -seed
    inference_steps = int(inference_steps)
    hint_image = image
    if hint_image is not None:
        if hint_image.mode != 'RGB':
            hint_image = hint_image.convert('RGB')
        if hint_image.size != (width, height):
            hint_image = ImageOps.fit(hint_image, (width, height), method = Image.Resampling.LANCZOS)
    images = _model.generate(
            prompt = [prompt] * _model.device_count,
            neg_prompt = neg_prompt,
            hint_image = hint_image,
            mask_image = None,
            inference_steps = inference_steps,
            cfg = cfg,
            height = height,
            width = width,
            num_frames = num_frames,
            seed = seed
    )
    _seen_compilations.add((hint_image is None, inference_steps, height, width, num_frames))
    buffer = BytesIO()
    images[0].save(
            buffer,
            format = 'webp',
            save_all = True,
            append_images = images[1:],
            loop = 0,
            duration = round(1000 / fps),
            allow_mixed = True
    )
    data = base64.b64encode(buffer.getvalue()).decode()
    data = 'data:image/webp;base64,' + data
    buffer.close()
    return data

def check_if_compiled(image, inference_steps, height, width, num_frames, message):
    height = int(height)
    width = int(width)
    height = (height // 64) * 64
    width = (width // 64) * 64
    hint_image = image
    if (hint_image is None, inference_steps, height, width, num_frames) in _seen_compilations:
        return ''
    else:
        return  f"""{message}"""

if _preheat:
    print('\npreheating the oven')
    generate(
            prompt = 'preheating the oven',
            neg_prompt = '',
            image = None,
            inference_steps = 20,
            cfg = 12.0,
            seed = 0
    )
    print('Entertaining the guests with sailor songs played on an old piano.')
    dada = generate(
            prompt = 'Entertaining the guests with sailor songs played on an old harmonium.',
            neg_prompt = '',
            image = Image.new('RGB', size = (512, 512), color = (0, 0, 0)),
            inference_steps = 20,
            cfg = 12.0,
            seed = 0
    )
    print('dinner is ready\n')

with gr.Blocks(title = 'Make-A-Video Stable Diffusion JAX', analytics_enabled = False) as demo:
    variant = 'panel'
    with gr.Row():
        with gr.Column():
            intro1 = gr.Markdown("""
                        # Make-A-Video Stable Diffusion JAX

                        We have extended a pretrained LDM inpainting image generation model with temporal convolutions and attention.
                        We take advantage of the extra 5 input channels of the inpaint model to guide the video generation with a hint image and mask.
                        The hint image can be given by the user, otherwise it is generated by an generative image model.

                        The temporal convolution and attention is a port of [Make-A-Video Pytorch](https://github.com/lucidrains/make-a-video-pytorch/blob/main/make_a_video_pytorch) to FLAX.
                        It is a pseudo 3D convolution that seperately convolves accross the spatial dimension in 2D and over the temporal dimension in 1D.
                        Temporal attention is purely self attention and also separately attends to time and space.

                        Only the new temporal layers have been fine tuned on a dataset of videos themed around dance.
                        The model has been trained for 60 epochs on a dataset of 10,000 Videos with 120 frames each, randomly selecting a 24 frame range from each sample.

                        See model and dataset links in the metadata.

                        Model implementation and training code can be found at [https://github.com/lopho/makeavid-sd-tpu](https://github.com/lopho/makeavid-sd-tpu)
            """)
        with gr.Column():
            intro3 = gr.Markdown("""
                        **Please be patient. The model might have to compile with current parameters.**

                        This can take up to 5 minutes on the first run, and 2-3 minutes on later runs.
                        The compilation will be cached and consecutive runs with the same parameters
                        will be much faster.

                        Changes to the following parameters require the model to compile
                        - Number of frames
                        - Width & Height
                        - Steps
                        - Input image vs. no input image
            """)

    with gr.Row(variant = variant):
        with gr.Column(variant = variant):
            with gr.Row():
                #cancel_button = gr.Button(value = 'Cancel')
                submit_button = gr.Button(value = 'Make A Video', variant = 'primary')
            prompt_input = gr.Textbox(
                    label = 'Prompt',
                    value = 'They are dancing in the club while sweat drips from the ceiling.',
                    interactive = True
            )
            neg_prompt_input = gr.Textbox(
                    label = 'Negative prompt (optional)',
                    value = '',
                    interactive = True
            )
            inference_steps_input = gr.Slider(
                label = 'Steps',
                minimum = 2,
                maximum = 100,
                value = 20,
                step = 1
            )
            cfg_input = gr.Slider(
                    label = 'Guidance scale',
                    minimum = 1.0,
                    maximum = 20.0,
                    step = 0.1,
                    value = 15.0,
                    interactive = True
            )
            seed_input = gr.Number(
                    label = 'Random seed',
                    value = 0,
                    interactive = True,
                    precision = 0
            )
            image_input = gr.Image(
                    label = 'Input image (optional)',
                    interactive = True,
                    image_mode = 'RGB',
                    type = 'pil',
                    optional = True,
                    source = 'upload'
            )
            num_frames_input = gr.Slider(
                    label = 'Number of frames to generate',
                    minimum = 1,
                    maximum = 24,
                    step = 1,
                    value = 24
            )
            width_input = gr.Slider(
                    label = 'Width',
                    minimum = 64,
                    maximum = 512,
                    step = 64,
                    value = 448
            )
            height_input = gr.Slider(
                    label = 'Height',
                    minimum = 64,
                    maximum = 512,
                    step = 64,
                    value = 448
            )
            fps_input = gr.Slider(
                    label = 'Output FPS',
                    minimum = 1,
                    maximum = 1000,
                    step = 1,
                    value = 12
            )
        with gr.Column(variant = variant):
            #no_gpu = gr.Markdown('**Until a GPU is assigned expect extremely long runtimes up to 1h+**')
            #will_trigger = gr.Markdown('')
            patience = gr.Markdown('**Please be patient. The model might have to compile with current parameters.**')
            image_output = gr.Image(
                    label = 'Output',
                    value = 'example.webp',
                    interactive = False
            )
    #trigger_inputs = [ image_input, inference_steps_input, height_input, width_input, num_frames_input ]
    #trigger_check_fun = partial(check_if_compiled, message = 'Current parameters will trigger compilation.')
    #height_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
    #width_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
    #num_frames_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
    #image_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
    #inference_steps_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
    #will_trigger.value = trigger_check_fun(image_input.value, inference_steps_input.value, height_input.value, width_input.value, num_frames_input.value)
    ev = submit_button.click(
        fn = generate,
        inputs = [
                prompt_input,
                neg_prompt_input,
                image_input,
                inference_steps_input,
                cfg_input,
                seed_input,
                fps_input,
                num_frames_input,
                height_input,
                width_input
        ],
        outputs = image_output,
        postprocess = False
    )
    #cancel_button.click(fn = lambda: None, cancels = ev)

demo.queue(concurrency_count = 1, max_size = 32)
demo.launch()