Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	| from uuid import uuid4 | |
| import gradio as gr | |
| from laia.scripts.htr.decode_ctc import run as decode | |
| from laia.common.arguments import CommonArgs, DataArgs, TrainerArgs, DecodeArgs | |
| import sys | |
| from tempfile import NamedTemporaryFile, mkdtemp | |
| from pathlib import Path | |
| from contextlib import redirect_stdout | |
| import re | |
| from huggingface_hub import snapshot_download | |
| images = Path(mkdtemp()) | |
| IMAGE_ID_PATTERN = r"(?P<image_id>[-a-z0-9]{36})" | |
| CONFIDENCE_PATTERN = r"(?P<confidence>[0-9.]+)" # For line | |
| TEXT_PATTERN = r"\s*(?P<text>.*)\s*" | |
| LINE_PREDICTION = re.compile(rf"{IMAGE_ID_PATTERN} {CONFIDENCE_PATTERN} {TEXT_PATTERN}") | |
| models_name = ["Teklia/pylaia-rimes"] | |
| MODELS = {} | |
| DEFAULT_HEIGHT = 128 | |
| def get_width(image, height=DEFAULT_HEIGHT): | |
| aspect_ratio = image.width / image.height | |
| return height * aspect_ratio | |
| def load_model(model_name): | |
| if model_name not in MODELS: | |
| MODELS[model_name] = Path(snapshot_download(model_name)) | |
| return MODELS[model_name] | |
| def predict(model_name, input_img): | |
| model_dir = load_model(model_name) | |
| temperature = 2.0 | |
| batch_size = 1 | |
| weights_path = model_dir / "weights.ckpt" | |
| syms_path = model_dir / "syms.txt" | |
| language_model_params = {"language_model_weight": 1.0} | |
| use_language_model = (model_dir / "tokens.txt").exists() | |
| if use_language_model: | |
| language_model_params.update( | |
| { | |
| "language_model_path": str(model_dir / "language_model.arpa.gz"), | |
| "lexicon_path": str(model_dir / "lexicon.txt"), | |
| "tokens_path": str(model_dir / "tokens.txt"), | |
| } | |
| ) | |
| common_args = CommonArgs( | |
| checkpoint=str(weights_path.relative_to(model_dir)), | |
| train_path=str(model_dir), | |
| experiment_dirname="", | |
| ) | |
| data_args = DataArgs(batch_size=batch_size, color_mode="L") | |
| trainer_args = TrainerArgs( | |
| # Disable progress bar else it messes with frontend display | |
| progress_bar_refresh_rate=0 | |
| ) | |
| decode_args = DecodeArgs( | |
| include_img_ids=True, | |
| join_string="", | |
| convert_spaces=True, | |
| print_line_confidence_scores=True, | |
| print_word_confidence_scores=False, | |
| temperature=temperature, | |
| use_language_model=use_language_model, | |
| **language_model_params, | |
| ) | |
| with NamedTemporaryFile() as pred_stdout, NamedTemporaryFile() as img_list: | |
| image_id = uuid4() | |
| # Resize image to 128 if bigger/smaller | |
| input_img = input_img.resize((int(get_width(input_img)), DEFAULT_HEIGHT)) | |
| input_img.save(str(images / f"{image_id}.jpg")) | |
| # Export image list | |
| Path(img_list.name).write_text("\n".join([str(image_id)])) | |
| # Capture stdout as that's where PyLaia outputs predictions | |
| with redirect_stdout(open(pred_stdout.name, mode="w")): | |
| decode( | |
| syms=str(syms_path), | |
| img_list=img_list.name, | |
| img_dirs=[str(images)], | |
| common=common_args, | |
| data=data_args, | |
| trainer=trainer_args, | |
| decode=decode_args, | |
| num_workers=1, | |
| ) | |
| # Flush stdout to avoid output buffering | |
| sys.stdout.flush() | |
| predictions = Path(pred_stdout.name).read_text().strip().splitlines() | |
| assert len(predictions) == 1 | |
| _, score, text = LINE_PREDICTION.match(predictions[0]).groups() | |
| return input_img, {"text": text, "score": score} | |
| gradio_app = gr.Interface( | |
| predict, | |
| inputs=[ | |
| gr.Dropdown(models_name, value=models_name[0], label="Models"), | |
| gr.Image( | |
| label="Upload an image of a line", | |
| sources=["upload", "clipboard"], | |
| type="pil", | |
| height=DEFAULT_HEIGHT, | |
| width=2000, | |
| image_mode="L", | |
| ), | |
| ], | |
| outputs=[ | |
| gr.Image(label="Processed Image"), | |
| gr.JSON(label="Decoded text"), | |
| ], | |
| examples=[ | |
| ["Teklia/pylaia-rimes", str(filename)] | |
| for filename in Path("examples").iterdir() | |
| ], | |
| title="Decode the transcription of an image using a PyLaia model", | |
| cache_examples=True, | |
| ) | |
| if __name__ == "__main__": | |
| gradio_app.launch() | |

