Spaces:
Runtime error
Runtime error
| """ from https://github.com/keithito/tacotron """ | |
| ''' | |
| Cleaners are transformations that run over the input text at both training and eval time. | |
| Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners" | |
| hyperparameter. Some cleaners are English-specific. You'll typically want to use: | |
| 1. "english_cleaners" for English text | |
| 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using | |
| the Unidecode library (https://pypi.python.org/pypi/Unidecode) | |
| 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update | |
| the symbols in symbols.py to match your data). | |
| ''' | |
| import re | |
| from unidecode import unidecode | |
| from phonemizer import phonemize | |
| # Regular expression matching whitespace: | |
| _whitespace_re = re.compile(r'\s+') | |
| # List of (regular expression, replacement) pairs for abbreviations: | |
| _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [ | |
| ('mrs', 'misess'), | |
| ('mr', 'mister'), | |
| ('dr', 'doctor'), | |
| ('st', 'saint'), | |
| ('co', 'company'), | |
| ('jr', 'junior'), | |
| ('maj', 'major'), | |
| ('gen', 'general'), | |
| ('drs', 'doctors'), | |
| ('rev', 'reverend'), | |
| ('lt', 'lieutenant'), | |
| ('hon', 'honorable'), | |
| ('sgt', 'sergeant'), | |
| ('capt', 'captain'), | |
| ('esq', 'esquire'), | |
| ('ltd', 'limited'), | |
| ('col', 'colonel'), | |
| ('ft', 'fort'), | |
| ]] | |
| def expand_abbreviations(text): | |
| for regex, replacement in _abbreviations: | |
| text = re.sub(regex, replacement, text) | |
| return text | |
| def expand_numbers(text): | |
| return normalize_numbers(text) | |
| def lowercase(text): | |
| return text.lower() | |
| def collapse_whitespace(text): | |
| return re.sub(_whitespace_re, ' ', text) | |
| def convert_to_ascii(text): | |
| return unidecode(text) | |
| def basic_cleaners(text): | |
| '''Basic pipeline that lowercases and collapses whitespace without transliteration.''' | |
| text = lowercase(text) | |
| text = collapse_whitespace(text) | |
| return text | |
| def transliteration_cleaners(text): | |
| '''Pipeline for non-English text that transliterates to ASCII.''' | |
| text = convert_to_ascii(text) | |
| text = lowercase(text) | |
| text = collapse_whitespace(text) | |
| return text | |
| def english_cleaners(text): | |
| '''Pipeline for English text, including abbreviation expansion.''' | |
| text = convert_to_ascii(text) | |
| text = lowercase(text) | |
| text = expand_abbreviations(text) | |
| phonemes = phonemize(text, language='en-us', backend='espeak', strip=True) | |
| phonemes = collapse_whitespace(phonemes) | |
| return phonemes | |
| def english_cleaners2(text): | |
| '''Pipeline for English text, including abbreviation expansion. + punctuation + stress''' | |
| text = convert_to_ascii(text) | |
| text = lowercase(text) | |
| text = expand_abbreviations(text) | |
| phonemes = phonemize(text, language='en-us', backend='espeak', strip=True, preserve_punctuation=True, with_stress=True) | |
| phonemes = collapse_whitespace(phonemes) | |
| return phonemes | |